Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (01): 38-46.doi: 10.13475/j.fzxb.20220702009
• Invited Column: Frontiers of Textile Science and Technology • Previous Articles Next Articles
ZHANG Qian1,2, NIU Wenxin3, JIANG Chenghua3, GAO Jing1,2(), WANG Lu1,2
CLC Number:
[1] |
RADOSTIN P, RICHARD S A, ADAM S T, et al. Back pain in outer space[J]. Anesthesiology, 2021, 135(3):384-395.
doi: 10.1097/ALN.0000000000003812 pmid: 33979426 |
[2] | 吕松泽, 李小涛, 王惠娟, 等. 航天失重对人体的生理影响及对抗研究进展[J]. 医学争鸣, 2022, 43(2):86-90. |
LÜ Songze, LI Xiaotao, WANG Huijuan, et al. Advances in physiological effects of space weightlessness on human body and its countermeasures[J]. Negative, 2022, 43(2):86-90. | |
[3] |
DANIEL K O, SAWAN D, VIGNESH R, et al. Crew-friendly countermeasures against musculoskeletal injuries in aviation and spaceflight[J]. Frontiers in Physiology, 2020. DOI: 10.3389/fphys.2020.00837.
doi: 10.3389/fphys.2020.00837 |
[4] |
JOEY M, TAYLOR G, GEORGINA S, et al. The effects of microgravity on bone structure and function[J]. NPJ Microgravity, 2022, 8(1):9.
doi: 10.1038/s41526-022-00194-8 pmid: 35383182 |
[5] | 冯金升, 吴斌, 安春燕, 等. 航天飞行对人体脊柱影响的相关研究[J]. 颈腰痛杂志, 2020, 41(3):365-367. |
FENG Jinsheng, WU Bin, AN Chunyan, et al. Studies related to the effects of space flight on the human spine[J]. The Journal of Cervicodynia and Lumbodynia, 2020, 41(3):365-367. | |
[6] | JOANNE G. Compression garments 101[J]. Plastic Surgical Nuersing, 2007, 27(2):73-77. |
[7] | 徐水红, 闫利, 马爱军, 等. 航天特因环境影响及有关选拔训练项目和模拟方法[J]. 航天器环境工程, 2019, 36(1):1-6. |
XU Shuihong, YAN Li, MA Aijun, et al. The space special environments, the selection & training programs and the environmental simulation method[J]. Spacecraft Environment Engineering, 2019, 36(1):1-6. | |
[8] | 张万欣, 李潭秋, 尚坤, 等. 航天服压力防护技术发展与构想[J]. 航天医学与医学工程, 2018, 31(2):121-130. |
ZHANG Wanxin, LI Tanqiu, SHANG Kun, et al. Developments and conceptions of pressure protection technology in spacesuit[J]. Space Medicine & Medical Engineering, 2018, 31(2):121-130. | |
[9] |
WESSENDORF A M, NEWMAN D J. Dynamic understanding of human-skin movement and strain-field analysis[J]. IEEE Transactions on Bio-medical Engineering, 2012, 59(12):3432-3438.
doi: 10.1109/TBME.2012.2215859 pmid: 22961262 |
[10] | NEWMAN D J, CANINA M, TROTTI G L. Revolutionary design for astronaut exploration-beyond the bio-suit system[J]. AIP Conference Proceedings, 2007, 880(1):975-986. |
[11] | OBROPTA E W, NEWMAN D J. A comparison of human skin strain fields of the elbow joint for mechanical counter pressure space suit development[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2015:1-9. |
[12] | OBROPTA E W, NEWMAN D J. Skin strain fields at the shoulder joint for mechanical counter pressure space suit development[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2016:1-9. |
[13] |
JORGE B, FRANCISCOR S, JAVIER A S F, et al. In vivo measurement of surface skin strain during human gait to improve the design of rehabilitation devices[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22(15):1219-1228.
doi: 10.1080/10255842.2019.1655549 |
[14] | PORTER A P, MARCHESINI B, POTRYASILOVA I, et al. Soft exoskeleton knee prototype for advanced space suits and planetary exploration[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2020:7-14. |
[15] | 郑嵘, 刘志鹏, 陈晴, 等. 基于机械反压航天服的人体手臂非延长线网络绘制方法研究[J]. 载人航天, 2022, 28(2):159-167. |
ZHENG Rong, LIU Zhipeng, CHEN Qing, et al. Research on LoNEs drawing method of human arm for MCP space suit development[J]. Manned Spaceflight, 2022, 28(2):159-167. | |
[16] | 刘亚楠, 贾镇远. 抗荷服的发展综述[J]. 甘肃科技, 2015, 31(18):15-16. |
LIU Yanan, JIA Zhenyuan. An overview of the development of anti-charge clothing[J]. Gansu Science and Technology, 2015, 31(18):15-16. | |
[17] | 王红, 李宝辉, 张立辉, 等. 新型综合抗荷措施对快增长率模式高过载暴露防护效果的研究[J]. 空军医学杂志, 2020, 36(5):376-380. |
WANG Hong, LI Baohui, ZHANG Lihui, et al. The rapid onset rate high G protection effect of a new integrated anti-G measures[J]. Medical Journal of Air Force, 2020, 36(5):376-380. | |
[18] |
KOZLOVSKAYA I B, GRIGORIEV A I, STEPANTZOV V I. Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights[J]. Acta Astronautica, 1995, 36(8):661-668.
doi: 10.1016/0094-5765(95)00156-5 |
[19] | ARTILES D A, TRIGG C, JETHANI H, et al. Physiological and comfort assessment of the gravity loading countermeasure skinsuit during exercise[C]// IEEE Aerospace Conference. Big Sky: IEEE, 2016:1-10. |
[20] |
KOZLOVSKAYA I B, GRIGORIEV A I. Russian system of countermeasures on board of the International Space Station (ISS): the first results[J]. Acta Astronautica, 2004, 55(3):233-237.
doi: 10.1016/j.actaastro.2004.05.049 |
[21] |
OHIRA Y, YOSHINAGE T, NONAKA I, et al. Histochemical responses of human soleus muscle fibers to long-term bedrest with or without counter-measures[J]. The Japanese Journal of Physiology, 2000, 50(1):41-47.
doi: 10.2170/jjphysiol.50.41 |
[22] | 李志利, 姜世忠. 长期失重生理效应体育锻炼防护措施研究进展[J]. 载人航天, 2011, 17(1):23-27. |
LI Zhili, JIANG Shizhong. Development of physical exercise countermeasures for physiological decrements associated with long duration weightlessness[J]. Manned Spaceflight, 2011, 17(1):23-27. | |
[23] |
YARMANOVA E N, KOZLOVSKAYA I B, KHIMORODA N N, et al. Evolution of Russian microgravity countermeasures[J]. Aerospace Medicine and Human Performance, 2015, 86(12):32-37.
doi: 10.3357/AMHP.EC05.2015 |
[24] |
SEMENOVA K A. Basis for a method of dynamic proprioceptive correction in the restorative treatment of patients with residual-stage infantile cerebral palsy[J]. Neuroscience and Behavioral Physiology, 1997, 27(6):639-643.
doi: 10.1007/BF02461920 pmid: 9406213 |
[25] |
YAMASHITA K, OKUYAMA R, HONDA M, et al. Maximal and submaximal forces of slow fibers in human soleus after bed rest[J]. Journal of Applied Physiology, 2001, 91(1):417-424.
doi: 10.1152/jappl.2001.91.1.417 |
[26] |
KOZLOVSKAYA I B, YARMANOVA E N, YEGOROV A D, et al. Russian countermeasure systems for adverse effects of microgravity on long-duration ISS flights[J]. Aerospace Medicine and Human Performance, 2015, 86(12):24-31.
doi: 10.3357/AMHP.EC04.2015 |
[27] |
KOZLOVSKAYA I B, YARMANOVA E N, FOMINA E V. The Russian system of preventive countermeasures: its present and future[J]. Human Physiology, 2015, 41(7):704-711.
doi: 10.1134/S0362119715070075 |
[28] |
BOGOMOLOV V V, GRIGORIEV A I, KOZLOVSKAYA I B. The russian experience in medical care and health maintenance of the international space station crews[J]. Acta Astronautica, 2006, 60(4):237-246.
doi: 10.1016/j.actaastro.2006.08.014 |
[29] |
GREENA D A, SCOTT J P R. Spinal health during unloading and reloading associated with spaceflight[J]. Frontiers in Physiology, 2017. DOI: 10.3389/fphys.2017.01126.
doi: 10.3389/fphys.2017.01126 |
[30] |
SAYSON J V, LOTZ J, PARAZYNSKI S, et al. Back pain in space and post-flight spine injury: mechanisms and countermeasure development[J]. Acta Astronautica, 2013, 86:24-38.
doi: 10.1016/j.actaastro.2012.05.016 |
[31] |
PEIHONG C, SHINJI K, BRANDON B R, et al. Exercise within lower body negative pressure partially counteracts lumbar spine deconditioning associated with 28-day bed rest[J]. Journal of Applied Physiology, 2005, 99(1):39-44.
pmid: 15761083 |
[32] |
SHANKHWAR V, SINGH D, DEEPAK K K. Effect of novel designed bodygear on gastrocnemius and soleus muscles during stepping in human body[J]. Microgravity Science and Technology, 2021. DOI: 10.1007/s12217-021-09870-y.
doi: 10.1007/s12217-021-09870-y |
[33] |
SHANKHWAR V, SINGH D, DEEPAK K K. Effect of countermeasure bodygear on cardiac-vascular-respiratory coupling during 6-degree head-down tilt: an earth-based microgravity study[J]. Life Sciences in Space Research, 2022, 32:45-53.
doi: 10.1016/j.lssr.2021.10.004 pmid: 35065760 |
[34] |
SHANKHWAR V, SINGH D, DEEPAK K K. Characterization of electromyographical signals from biceps and rectus femoris muscles to evaluate the performance of squats coupled with countermeasure gravitational load modulating bodygear[J]. Microgravity Science and Technology, 2021. DOI: 10.1007/s12217-021-09899-z.
doi: 10.1007/s12217-021-09899-z |
[35] | BELLISLE R, NEWMAN D. Countermeasure suits for spaceflight[C]// International Conference on Environmental System. Sydney: ICES, 2020:1-12. |
[36] |
ATTIAS J, PHILIP A T C, WALDIE J, et al. The gravity-loading countermeasure skinsuit (GLCS) and its effect upon aerobic exercise performance[J]. Acta Astronautica, 2017, 132:111-116.
doi: 10.1016/j.actaastro.2016.12.001 |
[37] | WALDIE J M, NEWMAN D J. A gravity loading countermeasure skinsuit[J]. Acta Astronautica, 2010, 68(7):772-730. |
[38] |
CARVIL P A, JULIA A, SIMON E, et al. The effect of the gravity loading countermeasure skinsuit upon movement and strength[J]. Journal of Strength and Conditioning Research, 2017, 31(1):154-161.
doi: 10.1519/JSC.0000000000001460 pmid: 27135470 |
[39] |
STABLER R A, HELENA R, RONAN D, et al. Impact of the Mk VI skinsuit on skin microbiota of terrestrial volunteers and an international space station-bound astronaut[J]. NPJ Microgravity, 2017. DOI: 10.1038/s41526-017-0029-5.
doi: 10.1038/s41526-017-0029-5 |
[40] | 孙喜庆, 姚永杰, 吴兴裕, 等. 下体负压裤的研制与应用[J]. 中华航空航天医学杂志, 2001(1):57-59. |
SUN Xiqing, YAO Yongjie, WU Xingyu, et al. Development and application of lower body negative pressure suit[J]. Chinese Journal of Aerospace Medicine, 2001(1):57-59. | |
[41] |
CAMOBELL M R, CHARLES J B. Historical review of lower body negative pressure research in space medicine[J]. Aerospace Medicine and Human Performance, 2015, 86(7):633-640.
doi: 10.3357/AMHP.4246.2015 pmid: 26102144 |
[42] |
PETERSEN L G, HARGENS A, BIRD E M, et al. Mobile lower body negative pressure suit as an integrative countermeasure for spaceflight[J]. Aerospace Medicine and Human Performance, 2019, 90(12):993-999.
doi: 10.3357/AMHP.5408.2019 pmid: 31747995 |
[43] |
NEEKI A, HARGENS A. The mobile lower body negative pressure gravity suit for long-duration spaceflight[J]. Frontiers in Physiology, 2020. DOI: 10.3389/fphys.2020.00977.
doi: 10.3389/fphys.2020.00977 |
[44] | 张浩. 微重力环境下对抗骨质疏松的生物力学机理模拟研究[D]. 天津: 天津理工大学, 2022:53-54. |
ZHANG Hao. Simulation study on biomechanical mechanism of fighting osteoporosis in microgravity[D]. Tianjin: Tianjin University of Technology, 2022: 53-54. | |
[45] |
THEO F, CORENTIN G, LAURENCE S, et al. Early deconditioning of human skeletal muscles and the effects of a thigh cuff countermeasure[J]. International Journal of Molecular Sciences, 2021. DOI: 10.3390/ijms222112064.
doi: 10.3390/ijms222112064 |
[46] |
THERESE L M, LAURA P, PETER F, et al. DI-5-cuffs: bone remodelling and associated metabolism markers in humans after five days of dry immersion to simulate microgravity[J]. Frontiers in Physiology, 2022. DOI: 10.3389/fphys.2022.801448.
doi: 10.3389/fphys.2022.801448 |
[47] |
LAZZARI A T, ARIA K M, RICHARD M. Neurosurgery and spinal adaptations in spaceflight: a literature review[J]. Clinical Neurology and Neurosurgery, 2021. DOI: 10.1016/j.clineuro.2021.106755.
doi: 10.1016/j.clineuro.2021.106755 |
[48] | 苗龙龙. 太空跑台造型设计与研究[D]. 太原: 太原理工大学, 2016:11. |
MIAO Longlong. The research and form design of space treadmill[D]. Taiyuan: Taiyuan University of Technology, 2016:11. | |
[49] |
ENGLISH K L, BLOOMBERG J J, MULAVARA A P, et al. Exercise countermeasures to neuromuscular deconditioning in spaceflight[J]. Comprehensive Physiology, 2019, 10(1):171-196.
doi: 10.1002/cphy.c190005 pmid: 31853963 |
[50] | 金贵玉, 程伟. 服装压力舒适性主要影响因素和压力测量方法[J]. 针织工业, 2022(5):75-79. |
JING Guiyu, CHENG Wei. Main factors affecting clothing pressure comfort and measurement methods[J]. Knitting Industries, 2022(5):75-79. | |
[51] |
CORLETT E N, BISHOP R P. A technique for assessing postural discomfort[J]. Ergonomics, 1976, 19(2):175-182.
pmid: 1278144 |
[52] |
BORG G A. Psychophysical bases of perceived exertion[J]. Medicine and Science in Sports and Exercise, 1982, 14(5):377-381.
pmid: 7154893 |
[1] | DAI Yanyang, WANG Shitan, WANG Yunyi, LI Jun. Research progress in mobility performance of protective clothing based on sports biomechanics [J]. Journal of Textile Research, 2022, 43(11): 212-218. |
|