Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (12): 26-34.doi: 10.13475/j.fzxb.20220702201
• Fiber Materials • Previous Articles Next Articles
SUN Hui1,2, CUI Xiaogang1,2, PENG Siwei1,2, FENG Jiangli1,2, YU Bin1,2()
CLC Number:
[1] | World Health Organization. Ambient air pollution, a global assessment of exposure and burden of disease[M]. Geneva: The WTO Document Production Services, 2016: 121. |
[2] | HARRISON R M, HESTER R E, QUEROL X. Airborne particulate matter: sources, atmospheric processes and health[M]. Cambridge: Royal Society of Chemistry, 2016: 345-352. |
[3] |
COHEN A J, BRAUER M, BURNETT R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015[J]. The Lancet, 2017, 389 (10082): 1907-1918.
doi: 10.1016/S0140-6736(17)30505-6 |
[4] |
CAMPOS R K, JIN J, RAFAEL G H, et al. Decontamination of SARS-CoV-2 and other RNA viruses from N95 level meltblown poly propylene fabric using heat under different humidities[J]. ACS Nano, 2020, 14(10): 14017-14025.
doi: 10.1021/acsnano.0c06565 |
[5] | 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3): 168-174. |
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174. | |
[6] |
LI P H, WANG X D, SU M, et al. Characteristics of plastic pollution in the environment: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 107(4): 577-584.
doi: 10.1007/s00128-020-02820-1 |
[7] |
TANG X L, DONG Y, WEI J F, et al. Polypropylene nonwoven loaded with cerium-doped manganese oxides submicron particles for ozone decomposition and air filtration[J]. Separation and Purification Technology, 2021, 262: 118332-118340.
doi: 10.1016/j.seppur.2021.118332 |
[8] | SHALABY S E, BALAKOCY N G, IBRAHIUM Y H, et al. Nonwoven nylon-6 functional filters for protection from air pollutants[J]. Egyptian Journal of Chemistry, 2020, 63 (1): 27-36. |
[9] |
ILYAS R A, SAPUAN S M, HARUSSANI M M, et al. Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications[J]. Polymers, 2021, 13(8): 1326-1359.
doi: 10.3390/polym13081326 |
[10] |
SIAKENG R, JAWAID M, ARIFFIN H, et al. Natural fiber reinforced polylactic acid composites: a review[J]. Polymer Composites, 2019, 40(2): 446-463.
doi: 10.1002/pc.v40.2 |
[11] |
SINGHVI M S, ZINJARDE S S, GOKHALE D V. Polylactic acid: synthesis and biomedical applications[J]. Journal of Applied Microbiology, 2019, 127(6): 1612-1626.
doi: 10.1111/jam.14290 pmid: 31021482 |
[12] | 谷英姝, 汪滨, 张秀芹, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 214-217. |
GU Yingshu, WANG Bin, ZHANG Xiuqin, et al. Research progress on PLA melt-blown nonwoven applied in air filtration[J]. New Chemical Materials, 2021, 49(1): 214-217. | |
[13] |
ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air fil-tration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309-48314.
doi: 10.1002/app.v137.4 |
[14] |
TIEN C Y, CHEN J P, LI S, et al. Experimental and theoretical analysis of loading characteristics of different electret media with various properties toward the design of ideal depth filtration for nanoparticles and fine particles[J]. Separation and Purification Technology, 2020, 233: 116002-1160012.
doi: 10.1016/j.seppur.2019.116002 |
[15] |
THAKUR R, DAS D, DAS A. Electret air filters[J]. Separation and Purification Reviews, 2013, 42(2): 87-129.
doi: 10.1080/15422119.2012.681094 |
[16] |
KIM J, CHAN H S, BAE G N, et al. Electrospun magnetic nanoparticle-decorated nanofiber filter and its applications to high-efficiency air filtration[J]. Environmental Science & Technology, 2017, 51(20): 11967-11975.
doi: 10.1021/acs.est.7b02884 |
[17] |
LIU F, LI M Y, LI F, et al. Preparation and properties of PVDF/Fe3O4 nanofibers with magnetic and electret effects and their application in air filtration[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900856-1900865.
doi: 10.1002/mame.v305.4 |
[18] | PARK H W, JO Y M, PARK Y, et al. Application of magnetic field to iron contained dust capture[J]. Journal of the Korean Applied Science and Technology, 2014, 31(1): 59-65. |
[19] |
CHUI S S Y, LO S M F L, CHARMANT, et al. A chemically functionalizable nanoporous mate-rial [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1148-1150.
doi: 10.1126/science.283.5405.1148 |
[20] |
CHEN B, LI Y H, LI M X, et al. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite[J]. Microporous and Mesoporous Materials, 2021, 328: 111457-111465.
doi: 10.1016/j.micromeso.2021.111457 |
[21] |
HU Y C, YANG H, WANG R H, et al. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 626: 127093-127098.
doi: 10.1016/j.colsurfa.2021.127093 |
[22] |
ARJMANDIA M, ALTAEE A, ARJMANDI A, et al. A facile and efficient approach to increase the magnetic property of MOF-5[J]. Solid State Sciences, 2020, 106: 106292-106297.
doi: 10.1016/j.solidstatesciences.2020.106292 |
[23] |
SUN H, ZHANG H Y, MAO H M, et al. Facile synthesis of the magnetic metal-organic framework Fe3O4/Cu3(BTC)2 for efficient dye removal[J]. Environmental Chemistry Letters, 2019, 17: 1091-1096.
doi: 10.1007/s10311-018-00833-1 |
[24] | FISCHER E W, STERZEL H J, WEGNER G. Investigation of the structure of solution grown crystals of lactide co-polymers by means of chemical reactions[J]. Colloid and Polymer Science, 1973, 251: 980-990. |
[25] |
ECHEVERRÍA C, LIMÓN I, MUÑOZ-BONILLA A, et al. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers[J]. Polymers, 2021, 13: 2860-2876.
doi: 10.3390/polym13172860 |
[26] |
DAI X, SHI X W, HUO C G, et al. Study on the poly(lactic acid)/nano MOFs composites: insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites[J]. Thermochimica Acta, 2017, 657: 39-46.
doi: 10.1016/j.tca.2017.09.015 |
[1] | ZHANG Guangzhi, YANG Fusheng, FANG Jin, YANG Shun. One bath flame retardant finishing of polylactic acid nonwoven by phytic acid/chitosan/boric acid [J]. Journal of Textile Research, 2023, 44(10): 120-126. |
[2] | SUN Mingtao, CHEN Chengyu, YAN Weixia, CAO Shanshan, HAN Keqing. Influence of needling reinforcement frequency on properties of jute/polylactic acid fiber composite sheets [J]. Journal of Textile Research, 2023, 44(09): 91-98. |
[3] | ZHAO Mingshun, CHEN Xiaoxiong, YU Jinchao, PAN Zhijuan. Spinning and microstructure and properties of photochromic polylactic acid fibers [J]. Journal of Textile Research, 2023, 44(07): 10-17. |
[4] | CHEN Zhuo, DAI Junming, PAN Xiaodi, LI Mufang, LIU Ke, ZHAO Qinghua. Fabrication and properties of antibacterial polypropylene melt-blown nonwoven fabrics by reactive extrusion [J]. Journal of Textile Research, 2023, 44(06): 57-65. |
[5] | CHEN Huanhuan, CHEN Kaikai, YANG Murong, XUE Haolong, GAO Weihong, XIAO Changfa. Preparation and properties of polylactic acid/thymol antibacterial fibers [J]. Journal of Textile Research, 2023, 44(02): 34-43. |
[6] | ZHANG Yujing, CHEN Lianjie, ZHANG Sidong, ZHANG Qiang, HUANG Ruijie, YE Xiangyu, WANG Lunhe, XUAN Xiaoya, YU Bin, ZHU Feichao. Preparation of high melt index polylactic acid masterbatch and spinnability of its meltblown materials [J]. Journal of Textile Research, 2023, 44(02): 55-62. |
[7] | WANG Shudong. Structure and mechanical properties of three-dimensional porous biodegradable polymer artificial esophageal scaffold [J]. Journal of Textile Research, 2022, 43(12): 16-21. |
[8] | CHENG Yanting, MENG Jiaguang, XUE Tao, ZHI Chao. Preparation of 3D printed weft plain knitted fabric [J]. Journal of Textile Research, 2022, 43(09): 115-119. |
[9] | LIU Yanlin, GU Weiwen, WEI Jianfei, WANG Wenqing, WANG Rui. Research progress and status quo of heat-resistant polylactic acid materials [J]. Journal of Textile Research, 2022, 43(06): 180-186. |
[10] | SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93. |
[11] | CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17. |
[12] | ZHU Feichao, ZHANG Yujing, ZHANG Qiang, YE Xiangyu, ZHANG Heng, WANG Lunhe, HUANG Ruijie, LIU Guojin, YU Bin. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(01): 49-57. |
[13] | WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33. |
[14] | SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88. |
[15] | WEN Yufeng, MA Xiaopu, SHENG Fangyuan, ZHU Zhiguo. Preparation of microencapsulated intumescent flame retardant and its use in polylactic acid [J]. Journal of Textile Research, 2021, 42(06): 71-77. |
|