Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (03): 88-95.doi: 10.13475/j.fzxb.20220702308
• Textile Engineering • Previous Articles Next Articles
JIANG Bochen1,2, WANG Yue1,2, WANG Fujun1,2, LIN Jing1,2, GUO Aijun3, WANG Lu1,2, GUAN Guoping1,2()
CLC Number:
[1] | 兆天欣. 食管支架置入的临床适用性及其特点[J]. 中国组织工程研究与临床康复, 2008, 12(52): 10335-10338. |
ZHAO Tianxin. Clinical applicability and features of esophageal stent implantation[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(52): 10335-10338. | |
[2] |
SENTURK M, CAKIR M, YILDIRIM M A, et al. Stent applications for palliative treatment in advanced stage esophageal cancers[J]. Gastroenterology Research and Practice, 2021. DOI: 10.1155/2021/8034948.eCollection.
doi: 10.1155/2021/8034948.eCollection |
[3] |
GODIN A, LIBERMAN M. The modern approach to esophageal palliative and emergency surgery[J]. Ann Transl Med, 2021, 9(10): 905.
doi: 10.21037/atm.2020.03.107 pmid: 34164539 |
[4] | DIDDEN P, SPAANDER M, BRUNO M J. Esophageal stents in malignant and benign disorders.[J]. Curr Gastroenterol Rep, 2013, 15(4): 1-9. |
[5] | HINDY P, HONG J, LAM TSAI Y, et al. A comprehensive review of esophageal stents.[J]. Gastroenterology & Hepatology, 2012, 8(8): 526. |
[6] |
LAASCH H U, MILWARD G D, EDWARDS D W. 'Radial force' of colonic stents: a parameter without consistency, definition or standard[J]. International Journal of Gastrointestinal Intervention, 2020, 9(3): 99-105.
doi: 10.18528/ijgii200005 |
[7] | KANG Y. A review of self-expanding esophageal stents for the palliation therapy of inoperable esophageal malignancies[J]. BioMed Research International, 2019, 2019(8): 1-11. |
[8] | 倪晓宇, 赵海霞, 殷红莲, 等. 端部形状对支架-食管耦合系统力学行为的影响[J]. 医用生物力学, 2018, 33(2): 101-107. |
NI Xiaoyu, ZHAO Haixia, YIN Honglian, et al. Influence of end shapes on biomechanical behavior of the stent-esophagus coupling system[J]. Journal of Medical Biomechanics, 2018, 33(2): 101-107. | |
[9] |
VERMEULEN B D, SIERSEMA P D. Esophageal stenting in clinical practice: an overview[J]. Current Treatment Options in Gastroenterology, 2018, 16(2): 260-273.
doi: 10.1007/s11938-018-0181-3 pmid: 29557070 |
[10] | 李尧. 食管支架的可疑不良事件分析[J]. 中国医疗器械杂志, 2017, 41(1): 48-62. |
LI Yao. Analysis of suspected adverse events of esophageal stents[J]. Chinese Journal of Medical Instrumentation, 2017, 41(1): 48-62. | |
[11] |
PARK J G, JUNG G S, OH K S, et al. Double-layered PTFE-covered nitinol stents: experience in 32 patients with malignant esophageal strictures[J]. Cardiovasc Intervent Radiol, 2010, 33(4): 772-779.
doi: 10.1007/s00270-009-9718-0 pmid: 19787398 |
[12] |
YANG K, CAO J, YUAN T W, et al. Silicone-covered biodegradable magnesium stent for treating benign esophageal stricture in a rabbit model[J]. World Journal of Gastroenterology, 2019, 25(25): 3207-3217.
doi: 10.3748/wjg.v25.i25.3207 pmid: 31333312 |
[13] |
PARK S C, PARK N S, KIM D G, et al. Physical properties of covered stent in gastric acid environment: in vitro study[J]. Polymer Korea, 2014, 38(3): 351-357.
doi: 10.7317/pk.2014.38.3.351 |
[14] | 王璐, 邹秋华, 林婧, 等. 一种编织型一体成型血管覆膜支架及其制备方法:104689379A[P]. 2015-02-15. |
WANG Lu, ZOU Qiuhua, LIN Jing, et al. Integrated braided vascular covered stent and its preparation method:104689379A[P]. 2015-02-15. | |
[15] | 邹秋华. 一体化编织型血管支架的制备与力学性能研究[D]. 上海: 东华大学, 2016: 25-30. |
ZOU Qiuhua. Preparation and mechanical performance of new integrated braided stent grafts[D]. Shanghai: Donghua University, 2016: 25-30. | |
[16] | 孙世博, 关国平, 王璐, 等. 一体化编织食管覆膜支架制备及力学性能[J]. 东华大学学报(自然科学版), 2021, 47(6): 37-43. |
SUN Shibo, GUAN Guoping, WANG Lu, et al. Preparation and mechanical performance of braided hybrid esophageal stent grafts[J]. Journal of Donghua University (Natural Science), 2021, 47(6): 37-43. | |
[17] | 王芳, 俞鑫, 王文祖. 人工血管支架的编织工艺与表面性能的研究[J]. 山东纺织科技, 2006(4): 51-54. |
WANG Fang, YU Xin, WANG Wenzu. Study on braiding technology and surface properties of artificial vascular stent[J]. Shandong Textile Science and Technology, 2006(4): 51-54. | |
[18] | 赵帆. 双重可控式编织自增强型可降解血管支架的设计制备及构效关系[D]. 上海: 东华大学, 2019: 23-24. |
ZHAO Fan. Design and fabrication of dual controllable braided self-reinforced bioresorbable cardiovascular stent and its structure-function relationship analysis[D]. Shanghai: Donghua University, 2019: 23-24. | |
[19] | 邹秋华, 林婧, 王璐, 等. 一体化编织型血管覆膜支架的压缩性能[J]. 东华大学学报(自然科学版), 2017, 43(1): 27-30. |
ZOU Qiuhua, LIN Jing, WANG Lu, et al. Compression performance of braided integrated stent grafts[J]. Journal of Donghua University (Natural Science), 2017, 43(1): 27-30. | |
[20] | 隋纹龙, 陈南梁. 编织型医用管腔内支架的编织工艺研究[J]. 产业用纺织品, 2013, 31(10): 15-18. |
SUI Wenlong, CHEN Nanliang. Study on braiding parameters of braided medical intraluminal stent[J]. Technical Textiles, 2013, 31(10): 15-18. | |
[21] |
TOKUDA T, SHOMURA Y, TANIGAWA N, et al. Mechanical characteristics of composite knitted stents[J]. Cardiovasc Intervent Radiol, 2009, 32(5): 1028-1032.
doi: 10.1007/s00270-009-9622-7 pmid: 19506947 |
[22] | 付文宇, 李立新, 乔爱科. 编织支架弯曲变形时扁平现象的数值模拟研究[J]. 北京生物医学工程, 2020, 39(5): 455-461. |
FU Wenyu, LI Lixin, QIAO Aike. Numerical simulation of flattening phenomenon in braided stent during bending deformation[J]. Beijing Biomedical Engineering, 2020, 39 (5): 455-461. | |
[23] | 关颖. 血管覆膜支架生物力学:径向顺应性和纵向柔顺性的动态精细化研究[D]. 上海: 东华大学, 2018: 85-93. |
GUAN Ying. Biomechanics of stent-graft: study on dynamic radial compliance and longitudinal flexibility[D]. Shanghai: Donghua University, 2018: 85-93. | |
[24] |
ISAYAMA H, NAKAI Y, TOYOKAWA Y, et al. Measurement of radial and axial forces of biliary self-expandable metallic stents[J]. Gastrointestinal Endoscopy, 2009, 70(1): 37-44.
doi: 10.1016/j.gie.2008.09.032 pmid: 19249766 |
[25] |
PARIS F, JARROD K, MOHA Mmad A, et al. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of esophageal cancers[J]. Biomaterials Science, 2020, 8: 6625-6636.
doi: 10.1039/D0BM01355B |
[26] |
BEZROUK A, HOSSZU T, HROMADKO L, et al. Mechanical properties of a biodegradable self-expandable polydioxanone monofilament stent: in vitro force relaxation and its clinical relevance[J]. PLoS ONE, 2020. DOI: 10.1371/journal.pone.0235842.
doi: 10.1371/journal.pone.0235842 |
[27] |
JIANG J, MIAO Z, WU W B, et al. In vitro evaluation of the radial and axial force of self-expanding esophageal stents[J]. Endoscopy, 2013, 45(12): 997-1005.
doi: 10.1055/s-0033-1344985 pmid: 24288220 |
[1] | HUANG Wei, ZHANG Jiayu, ZHANG Dong, CHENG Chunzu, LI Ting, WU Wei. Property characterization and comparative analysis of Lyocell fibers [J]. Journal of Textile Research, 2023, 44(03): 42-48. |
[2] | CHEN Huanhuan, CHEN Kaikai, YANG Murong, XUE Haolong, GAO Weihong, XIAO Changfa. Preparation and properties of polylactic acid/thymol antibacterial fibers [J]. Journal of Textile Research, 2023, 44(02): 34-43. |
[3] | WANG Shudong. Structure and mechanical properties of three-dimensional porous biodegradable polymer artificial esophageal scaffold [J]. Journal of Textile Research, 2022, 43(12): 16-21. |
[4] | ZHANG Shucheng, XING Jian, XU Zhenzhen. Preparation and properties of multilayer sound absorption materials based on waste polyphenylene sulfide filter materials [J]. Journal of Textile Research, 2022, 43(12): 35-41. |
[5] | GUO Weina, XIN Sanfa, HU Wenfeng, GAO Yantao. Study on damage performance of silicon carbide fiber bundles in braiding process [J]. Journal of Textile Research, 2022, 43(12): 69-74. |
[6] | ZHANG Wei, JIANG Zhe, XU Qi, SUN Baozhong. Fabrication and thermal-activated recovery properties of shape memory composite braided circular tubes [J]. Journal of Textile Research, 2022, 43(11): 68-74. |
[7] | ZHANG Zhiying, WANG Yiqiu, SUI Jianhua. Study of hollow honeycomb molded composites reinforced by ultra high molecular weight polyethylene fabrics [J]. Journal of Textile Research, 2022, 43(11): 81-87. |
[8] | CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15. |
[9] | GAO Feng, SUN Yanlin, XIAO Shunli, CHEN Wenxing, LÜ Wangyang. Microstructure and properties of polyester composite fibers with different drafting ratios [J]. Journal of Textile Research, 2022, 43(08): 34-39. |
[10] | SUN Ying, LI Duanxin, YU Yang, CHEN Jialin, FAN Wanyue. Degumming of hemp fibers using Fenton method and fiber properties [J]. Journal of Textile Research, 2022, 43(08): 95-100. |
[11] | HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28. |
[12] | QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36. |
[13] | SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93. |
[14] | ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62. |
[15] | SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73. |
|