Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (10): 223-231.doi: 10.13475/j.fzxb.20220702902

• Comprehensive Review • Previous Articles     Next Articles

Research progress in design methods for semiconductor cooling garments

NIE Sixuan, YIN Hu(), NIE Yadong   

  1. Beihang University, Beijing 100191, China
  • Received:2022-07-11 Revised:2022-09-28 Online:2023-10-15 Published:2023-12-07

Abstract:

Significance Thermal damage and workplace accidents caused by working under high temperatures occur frequently. With advantages of portability, controllability,and environmental protection, semiconductor refrigeration garments are more suitable for use in the working scene. The semiconductor cooling garments can regulate the temperature and humidity of the human micro-environment and reduce the thermal discomfort of workers working in hot environments. This paper summarizes the methods to improve the efficiency and thermal comfort of semiconductor cooling garments which can help save energy and improve the wearing experience. The methods can be used as the basis for further experiments and design.

Progress The semiconductor cooling garment can be divided into a cold source module (including the refrigeration part and the heat dissipation part of the hot end) and a heat transfer module of the cold end. For the cold source module, ways to enhance the cooling efficiency involve altering the input and improving heat dissipation at the hot end. The heat dissipation methods of the hot end include forced air cooling, liquid cooling, and heat pipe cooling, different heat dissipation methods have their ways to improve the heat dissipation performance of the hot end, such as changing fan voltage, changing liquid and phase change medium. For the heat transfer module of the cold end, the heat transfer modes include liquid heat transfer, air heat transfer, and contact heat transfer. The appropriate heat transfer mode can be selected according to the working conditions and characteristics of different heat transfer modes. The parameters related to the structure and medium of the heat transfer part are the important factors affecting the heat transfer efficiency and thermal comfort. Thermal comfort experiment is an important way to evaluate and optimize cooling garments. In addition to the results obtained from the human clothing experiment, establishing the thermal comfort model of the human body-cooling garment-environment is an efficient analysis and processing method.

Conclusion and Prospect The factors influencing the cooling efficiency and thermal comfort of the semiconductor cooling garments were summarized from various aspects, which provided ideas for the design, optimization, and component selection of semiconductor cooling garments. For the cold source module, to improve the refrigeration efficiency, it is necessary to find the best input voltage and current of different types of cold sources, and conduct voltage input in a controllable and intelligent way. The heat dissipation mode shall be selected based on the weight, volume, and heat dissipation requirements. For the heat transfer part, the weight, efficiency, and thermal comfort of different heat transfer modes need to be considered. For air heat transfer, the heat loss can be reduced and the heat transfer performance can be improved by optimizing the air duct structure, changing the air temperature, wind speed, and air volume and reasonably designing the circulation space. For liquid heat transfer, it is necessary to select an appropriate liquid flow medium, optimize the structure of the liquid cooling pipeline, change the liquid flow rate, inlet temperature, and other parameters, and reduce the weight and volume as much as possible. For contact heat transfer, a comfortable and soft tactile experience is essential, and local supercooling needs to be prevented. The variables of the comfort experiment can not only change the parameters of the device, but also change the experimental environment and explore the human differences to ensure that the cooling clothing can adapt to the thermal comfort requirements under different working conditions. The human experiments and comfort models are both methods to solve the influence of variables. The comfort model can also be used for cold source optimization and comfort prediction. Lightweight, intelligent and comfortable semiconductor cooling garments that are suitable for multiple scenes will become the future research direction.

Key words: semiconductor refrigeration, cooling garment, thermal comfort, heat transfer form, heat dissipation method

CLC Number: 

  • TS941.731

Tab. 1

Comparison of three heat dissipation methods"

散热方式 优点 缺点
风冷散热 装置简单,质量轻,可提高制冷服的便携性 噪声大,振动大,散热效率低于液冷散热和热管散热,适用于小功率制冷服
液冷散热 噪声和震动小,散热效率高,速度快 需要电源、水泵等支持,装置复杂、质量大,耗电量大,成本高,易结露,易泄漏[23]
热管散热 散热效率极佳,散热装置较紧凑,体积相对较小 一般仍需要配合风冷等其它散热方式,成本较高

Fig. 1

Form of liquid heat transfer"

Fig. 2

Form of air heat transfer"

Fig. 3

Spiral (a), horizontal (b) and vertical (c) air-cooled clothing"

Fig. 4

Different air shunt positions of Y-shaped air distribution system. (a) Position 1; (b) Position 2; (c) Position 3"

Fig. 5

Baffle type(a), flow sharing type(b) and direct blowing type(c) air inlet"

Tab. 2

Comparison of three heat transfer methods"

传热方式 优点 缺点
液冷传热 液体的比热高,液冷换热的效率较高。适用于制冷功率高的场景 1) 装置比较复杂,需要水泵、储液箱等;质量较大,便携性差
2) 液冷装置耗电量较高
3) 液体介质有泄漏危险,安全性较低
4) 液冷可能会导致服装微气候的湿度升高,影响人体舒适度
风冷传热 便携性高,质量轻,提高了穿戴者的机动性,而且冷却速度快。适用于需要便携或劳动强度较大的场景 1) 气体的自由度比较高,气冷的热损失却很大
2) 气体的比热低于液体,仅通过传导或对流散热,效率较低
3) 由于空气的大流动性,空气的温度很难控制,风冷系统的尺寸、质量、噪声和能量转换效率等问题限制了风冷服使用
接触传热 降低了在传热过程中的热损失,能显著提高降温效果和降温效率。适用于小面积局部制冷 1) 无法实现大面积制冷,导致冷量分配不均匀,易出现局部过冷的状况
2) 普通半导体冷却板的外表面为硬质陶瓷,会给佩戴者带来不适,从而影响使用者的热舒适性[42]
3) 使用柔性半导体模块的服装一般不包括散热部分,这限制了其在体育等应用中的潜力,无法适应密集的体力活动的应用场景[9]
[1] 牛梦雨, 潘姝雯, 戴宏钦, 等. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(7): 144-150.
NIU Mengyu, PAN Shuwen, DAI Hongqin, et al. Relationship between thermal-moist comfort of medical protective clothing and human fatigue[J]. Journal of Textile Research, 2021, 42(7): 144-150.
[2] ALJAROUDI A M, BHATTACHARYA A, YORIO P, et al. Probability of hyperthermia in a hot environment while wearing a liquid cooling garment underneath firefighters' protective clothing[J]. Journal of Occupational and Environmental Hygiene, 2021, 18(4/5): 203 -211.
doi: 10.1080/15459624.2021.1898622
[3] 范一强, 贺建芸, 刘士成, 等. 制冷与制热空调服的研究进展[J]. 纺织学报, 2018, 39(7): 174-180.
FAN Yiqiang, HE Jianyun, LIU Shicheng, et al. Review of cooling and heating garments[J]. Journal of Textile Research, 2018, 39(7): 174-180.
[4] 赵威, 张品. 热电制冷技术的研究与应用现状[J]. 制冷, 2020, 39(3): 18-21.
ZHAO Wei, ZHANG Pin. Research and application of thermoelectric refrigeration technology[J]. Refrigeration, 2020, 39 (3): 18-21.
[5] ZHAO D, LU X, FAN T, et al. Personal thermal management using portable thermoelectrics for potential building energy saving[J]. Applied Energy, 2018, 218: 282 -291.
doi: 10.1016/j.apenergy.2018.02.158
[6] 杨建敏. 风冷散热半导体制冷系统性能分析及实验研究[D]. 南昌: 南昌大学, 2009: 15-48.
YANG Jianmin. The performance analysis and experimental study of the air cooling semiconductor refrigeration system[D]. Nanchang: Nanchang University, 2009: 15-48.
[7] LI Z, ZHANG M, XU Y, et al. Research on the influence and error of cooling effect based on thermoelectric liquid cooling garment[J]. SSRN Electronic Journal, 2022. DOI: 10.2139/ssrn.4057322.
[8] SHU W, WANG J, ZHANG X, et al. A statistical study to evaluate the performance of liquid cooling garments considering thermal comfort[J]. Journal of Electronic Packaging, 2020. DOI: 10.1115/ipack2019-6325.
[9] DABROWSKA A, KOBUS M, PEKOSŁAWSKI B, et al. A comparative analysis of thermoelectric modules for the purpose of ensuring thermal comfort in protective clothing[J]. Applied Sciences, 2021. DOI: 10.3390/app11178068.
[10] CADARETTE B S, CHEUVRONT S N, KOLKA M A, et al. Intermittent microclimate cooling during exercise-heat stress in us army chemical protective clothing[J]. Ergonomics, 2006, 49(2): 209 -219.
pmid: 16484146
[11] VERNIEUW C R, STEPHENSON L A, KOLKA M A. Thermal comfort and sensation in men wearing a cooling system controlled by skin temperature[J]. Human Factors, 2007, 49(6): 1033 -1044.
pmid: 18074702
[12] HE Y, CAO C, WU J, et al. Investigations on coupling between performance and external operational conditions for a semiconductor refrigeration system[J]. International Journal of Refrigeration, 2020, 109: 172 -179.
doi: 10.1016/j.ijrefrig.2019.09.021
[13] 金刚善. 小空间半导体制冷的实验研究[J]. 兰州理工大学学报, 2004(3): 51 -54.
JIN Gangshan. Experimental investigation of small space semiconductor refrigeration[J]. Journal of Lanzhou University of Technology, 2004(3): 51 -54.
[14] 丁喜梅. 新型半导体降温防护服研究与设计[D]. 西安: 西安科技大学, 2018: 13-30.
DING Ximei. Research and design of novel semiconductor cooling protective suit[D]. Xi'an: Xi'an University of Science and Technology, 2018: 13-30.
[15] XU Y, LI Z, WANG J, et al. Man-portable cooling garment with cold liquid circulation based on thermoelectric refrigeration[J]. Applied Thermal Engineering, 2022. DOI: 10.1016/j.applthermaleng.2021.117730.
[16] WANG Y J, LIU Z L, PAN D N. Analysis of experimental data of semiconductor air-conditioning garment[C]// IOP Conference Series: Earth and Environmental Science. Sanya: IOP Publishing, 2020.DOI: 10.1088/1755-1315/495/1/012003.
[17] D'ANGELO M, D'ANGELO J, ALMAJALI M, et al. Augmented cooling vest system subassembly: design and analysis[J]. Energy Conversion and Management, 2014, 79: 140 -145.
doi: 10.1016/j.enconman.2013.12.004
[18] REN L F, MA L, LIU C C, et al. Experimental study on performance parameters of semiconductor refrigeration garment for different working conditions[C]// 2018 International Conference on Energy Development and Environmental Protection (EDEP 2018). Nanjing:Atlantis Press, 2018: 78 -83.
[19] 张晓芳. 水冷式半导体冰箱制冷性能的研究[D]. 湘潭: 湘潭大学, 2012: 28-32.
ZHANG Xiaofang. Water cooling effects on thermoelectric refrigerators[D]. Xiangtan: Xiangtan University, 2012 : 28-32.
[20] 白晓亮. 半导体制冷的散热与热管散热器的设计[J]. 制冷, 1998(4): 46 -49.
BAI Xiaoliang. Heat output of semiconductor-refrigeration and the design of heat-pipe-exchanger[J]. Refrigeration, 1998(4): 46 -49.
[21] RIFFAT S B, OMER S A, MA X. A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation[J]. Renewable Energy, 2001, 23(2): 313 -323.
doi: 10.1016/S0960-1481(00)00170-1
[22] WINARTA A, RASTA I M, MIDIANI L P I, et al. Experimental study of thermoelectric cooler box using heat sink with u-shape heat pipe and methanol working fluid[C]// IOP Conference Series: Materials Science and Engineering. Indonesia: IOP Publishing, 2021.DOI: 10.1088/1757-899X/1034/1/012033.
[23] 谢远成, 欧中红. 电子设备散热技术的发展[J]. 舰船电子工程, 2019, 39(8): 14 -18.
XIE Yuancheng, OU Zhonghong. Development of heat dissipation technology for electronic equipment[J]. Ship Electronic Engineering, 2019, 39(8): 14 -18.
[24] 王小波, 钱晓明, 王立晶, 等. 液体冷却服研究进展及消防应用可行性研究[J]. 纺织学报, 2021, 42(6): 198-207.
WANG Xiaobo, QIAN Xiaoming, WANG Lijing, et al. Review on liquid cooling garment and its feasibility study in fire fighting[J]. Journal of Textile Research, 2021, 42(6): 198-207.
[25] 李利娜. 新型液冷服的研制与开发[D]. 天津: 天津工业大学, 2009: 44-51.
LI Li'na. Research and development of new liquid cooling clothing[D]. Tianjin: Tiangong University, 2009: 44-51.
[26] KABEEL A E, MOUSA M G, ELSAYED M. Theoretical study of thermoelectric cooling system performance[J]. Journal of Engineering Research, 2019(3): 10 -19.
[27] ZHANG M, LI Z, WANG Q, et al. Research on refrigerant optimization and characteristic parameters based on thermoelectric refrigeration cooling gar-ment[J]. Applied Thermal Engineering, 2022. DOI: 10.1016/j.applthermaleng.2022.118606.
[28] 尹勇, 何研秋, 魏莉莉, 等. 基于半导体制冷的水冷式体温调节服[J]. 节能, 2020, 39(8): 69 -73.
YIN Yong, HE Yanqiu, WEI Lili, et al. Water cooled body temperature regulating suit based on semiconductor refrigeration[J]. Energy Conservation, 2020, 39(8): 69 -73.
[29] FLOURIS A D, CHEUNG S S. Design and control optimization of microclimate liquid cooling systems underneath protective clothing[J]. Annals of Biomedical Engineering, 2006, 34(3): 359 -372.
pmid: 16463083
[30] NUNNELEY S A. Water cooled garments: a review[J]. Space Life Sciences, 1970, 2(3): 335 -360.
pmid: 4940654
[31] XU X. Multi-loop control of liquid cooling garment systems[J]. Ergonomics, 1999, 42(2): 282 -298.
pmid: 10024848
[32] 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(6): 106-112.
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018, 39(6): 106-112.
[33] 张万欣. 利用暖体假人对液冷服散热特性的实验研究分析[J]. 航天医学与医学工程, 2001, 14(4): 257-260.
ZHANG Wanxin. Appraisal and analysis of heat removing characteristic of liquid cooling garment using thermal manikin[J]. Space Medicine & Medical Engineering, 2001, 14(4): 257 -260.
[34] YANG K, JIAO M L, CHEN Y S, et al. Study on heat transfer of liquid cooling garment based on a novel thermal manikin[J]. International Journal of Clothing Science and Technology, 2008, 20(5): 289 -298.
doi: 10.1108/09556220810898908
[35] LI Z, ZHANG M, XU Y U, et al. Design and research of liquid cooling garments in thermal environment[J]. International Journal of Refrigeration, 2022, 139: 136-147.
doi: 10.1016/j.ijrefrig.2022.04.014
[36] 陈康. 基于热电制冷的新型人体冷却服研究[D]. 济南: 山东大学, 2020: 33-36.
CHEN Kang. Experimental study of human cooling suit based on thermoelectric refrigeration[D]. Ji'nan: Shandong University, 2020: 33-36.
[37] 张万欣, 陈景山, 李潭秋. 液冷服散热原理模型及其分析[J]. 航天医学与医学工程, 2000, 13(5): 350 -354.
ZHANG Wanxin, CHEN Jingshan, LI Tanqiu. A heat transfer model for liquid cooling garment (LCG) and its analysis[J]. Space Medicine & Medical Engineering, 2000, 13(5): 350 -354.
[38] 韩增旺, 唐世君, 赖军. 换气式降温服的实验评价研究[J]. 中国个体防护装备, 2010(3): 11-14.
HAN Zengwang, TANG Shijun, LAI Jun. The experimental evaluation studies of circulating air cooling garment[J]. China Pers Prot Equip, 2010(3): 11-14.
[39] AL SAYED C, VINCHES L, HALLÉ S. Towards optimizing a personal cooling garment for hot and humid deep mining conditions[J]. Open Journal of Optimization, 2016, 5(1): 35 -43.
doi: 10.4236/ojop.2016.51005
[40] 许鹏飞. 基于热电制冷的气冷服中的流动与换热研究[D]. 南京: 南京航空航天大学, 2018: 63-70.
XU Pengfei. Research on the flow and heat transfer in air cooling garment based on thermoelectric cooling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 63-70.
[41] ZHAO M, GAO C, WANG F, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
doi: 10.1016/j.ergon.2013.01.001
[42] LOU L, SHOU D, PARK H, et al. Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving[J]. Energy and Buildings, 2020.DOI: 10.1016/j.enbuild.2020.110374.
[43] LOU L, WU Y S, ZHOU Y, et al. Effects of body positions and garment design on the performance of a personal air cooling/heating system[J]. Indoor Air, 2021.DOI: 10.1111/ina.12921.
[44] 米立华. 气冷服与体表空间内流动传热模拟研究[D]. 湘潭: 湖南科技大学, 2019: 43-49.
MI Lihua. Simulation of flow and heat transfer between air cooling garment and surface space[D]. Xiangtan: Hunan University of Science and Technology, 2019: 43-49.
[45] YANG J, WANG F, SONG G, et al. Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(1): 354 -363.
doi: 10.1080/10803548.2020.1762316
[46] 刘何清, 高黎颖, 游波, 等. 影响气体冷却服热舒适性因素的实验[J]. 西安科技大学学报, 2018(6): 910 -918.
LIU Heqing, GAO Liying, YOU Bo, et al. Experimental study on factors affecting thermal comfortability of air cooling garment[J]. Journal of Xi'an University of Science and Technology, 2018(6): 910 -918.
[47] 高黎颖. 气冷服对人体体表生理参数影响实验研究[D]. 湘潭: 湖南科技大学, 2017: 61-75.
GAO Liying. Experimental study on the effect of air cooling garment on physiological parameters of human body surface[D]. Xiangtan: Hunan University of Science and Technology, 2017: 61-75.
[48] CHOUDHARY B, WANG F, KE Y, et al. Development and experimental validation of a 3D numerical model based on CFD of the human torso wearing air ventilation clothing[J]. International Journal of Heat and Mass Transfer, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118973.
[49] 陈盛祥, 武卫东, 盛伟, 等. 不同进风型式下气体冷却服中空气流动与换热的研究[J]. 低温与超导, 2010, 38(2): 43 -47.
CHEN Shengxiang, WU Weidong, SHENG Wei, et al. Study of airflow and heat transfer in air cooling garment under different types of air inlet distribution[J]. Cryogenics and Superconductivity, 2010, 38(2): 43 -47.
[50] YANG H, CAO B, JU YI, et al. The effects of local cooling at different torso parts in improving body thermal comfort in hot indoor environments[J]. Energy and Buildings, 2019, 198: 528 -541.
doi: 10.1016/j.enbuild.2019.06.004
[51] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019.DOI: 10.1126/sciadv.aaw0536.
[52] CAO H, BRANSON D H, PEKSOZ S, et al. Fabric selection for a liquid cooling garment[J]. Textile Research Journal, 2006, 76(7): 587 -595.
doi: 10.1177/0040517506067375
[53] KIM J H, COCA A, WILLIAMS W J, et al. Subjective perceptions and ergonomics evaluation of a liquid cooled garment worn under protective ensemble during an intermittent treadmill exercise[J]. Ergonomics, 2011, 54(7): 626-635.
doi: 10.1080/00140139.2011.583362
[54] DAVEY S L, BARWOOD M J, TIPTON M J. Thermal perceptions and skin temperatures during continuous and intermittent ventilation of the torso throughout and after exercise in the heat[J]. European Journal of Applied Physiology, 2013, 113(11): 2723-2735.
doi: 10.1007/s00421-013-2697-5 pmid: 23974846
[55] KIM J H, COCA A, WILLIAMS W J, et al. Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble[J]. Journal of Occupational and Environmental Hygiene, 2011, 8(7): 409-416.
doi: 10.1080/15459624.2011.584840
[56] BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Assessment of an active liquid cooling garment intended for use in a hot environment[J]. Applied Ergonomics, 2017, 58: 182-189.
doi: S0003-6870(16)30120-X pmid: 27633212
[57] MOKHTARI YAZDI M, SHEIKHZADEH M, DABIRZADEH A, et al. Modeling the efficiency and heat gain of a phase change material cooling vest: the effect of ambient temperature and outer isolation[J]. Journal of Industrial Textiles, 2016, 46(2): 436-454.
doi: 10.1177/1528083715589746
[58] ZHENG Q, KE Y, WANG H. Numerical simulation of the human thermophysiological responses with a liquid circulating garment: experimental validation and parametric study[J]. Energy and Buildings, 2022.DOI: 10.1016/j.enbuild.2022.112332.
[59] EL AKILI Z, BOUZIDI Y, MERABTINE A, et al. Experimental investigation on the thermal comfort of the frail people in a sitting posture under transient and non-uniform thermal environments[C]// 2021 12th International Renewable Energy Congress (IREC). [S.l.]: IEEE, 2021: 1-5.
[60] WANG D, CHEN G, SONG C, et al. Experimental study on coupling effect of indoor air temperature and radiant temperature on human thermal comfort in non-uniform thermal environment[J]. Building and Environment, 2019. DOI: 10.1016/j.buildenv.2019.106387.
[61] 赵蒙蒙, 柯莹, 王发明, 等. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(3): 183-188.
ZHAO Mengmeng, KE Ying, WANG Faming, et al. Research and development trend of ventilation clothing thermal comfort[J]. Journal of Textile Research, 2019, 40(3): 183-188.
[62] WANG Z, DE DEAR R, LUO M, et al. Individual difference in thermal comfort: a literature review[J]. Building and Environment, 2018, 138: 181-193.
doi: 10.1016/j.buildenv.2018.04.040
[63] JI W, CAO B, LUO M, et al. Influence of short-term thermal experience on thermal comfort evaluations: a climate chamber experiment[J]. Building and Environment, 2017, 114: 246-256.
doi: 10.1016/j.buildenv.2016.12.021
[64] YU J, OUYANG Q, ZHU Y, et al. A comparison of the thermal adaptability of people accustomed to air‐conditioned environments and naturally ventilated environments[J]. Indoor Air, 2012, 22(2): 110-118.
doi: 10.1111/ina.2012.22.issue-2
[65] HOU J, YANG Z, XU P, et al. Design and performance evaluation of novel personal cooling garment[J]. Applied Thermal Engineering, 2019, 154: 131-139.
doi: 10.1016/j.applthermaleng.2019.02.013
[66] MEKJAVIC I B, YOGEV D, CIUHA U. Perception of thermal comfort during skin cooling and heating[J]. Life, 2021, 11(7): 681.
doi: 10.3390/life11070681
[67] MANSI S A, BARONE G, FORZANO C, et al. Measuring human physiological indices for thermal comfort assessment through wearable devices: a review[J]. Measurement, 2021.DOI: 10.1016/j.measurement.2021.109872.
[68] LI W, LIANG Y, LIU C, et al. Study of ultra-light modular phase change cooling clothing based on dynamic human thermal comfort modeling[J]. Building and Environment, 2022.DOI: 10.1016/j.buildenv.2022.109390.
[69] XU X, ENDRUSICK T, LAPRISE B, et al. Efficiency of liquid cooling garments: prediction and manikin measurement[J]. Aviation, Space, and Environmental Medicine, 2006, 77(6): 644-648.
pmid: 16780244
[70] SHU W, FAN Y, ZHANG X, et al. Thermal sensation modeling and experiments for liquid-cooled gar-ments[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 10(3): 418-423.
doi: 10.1109/TCPMT.5503870
[1] LIU Guangju, SU Yun, TIAN Miao, LI Jun. Two-dimensional transient heat transfer model for electrically heated shoe upper and experimental validation [J]. Journal of Textile Research, 2023, 44(10): 127-133.
[2] ZHAO Chen, WANG Min, LI Jun. Review on optimal design of personal cooling garments on cooling effect [J]. Journal of Textile Research, 2023, 44(09): 243-250.
[3] WANG Zhongyu, SU Yun, WANG Yunyi. Development of personal comfort models based on machine learning and their application prospect in clothing engineering [J]. Journal of Textile Research, 2023, 44(05): 228-236.
[4] ZHANG Zhaohua, CHEN Xue, NI Jun, YANG Yutong, ZOU Yifan. Influence of local electric heating on overall thermal response of human body in cold environment [J]. Journal of Textile Research, 2023, 44(03): 187-194.
[5] ZHENG Qing, YAN Fangying, KE Ying, WANG Hongbo. Determination and validation of comfort temperatures for quilts based on temperature rating model of sleeping bags [J]. Journal of Textile Research, 2023, 44(02): 151-158.
[6] CHEN Ying, SONG Zetao, ZHENG Xiaohui, JIANG Yan, CHANG Suqin. Study on cooling performance of evaporative cooling garment [J]. Journal of Textile Research, 2022, 43(11): 141-147.
[7] CHENG Ningbo, MIAO Dongyang, WANG Xianfeng, WANG Zhaohui, DING Bin, YU Jianyong. Review in functional textiles for personal thermal and moisture comfort management [J]. Journal of Textile Research, 2022, 43(10): 200-208.
[8] JIANG Shu, LI Jun. Research progress on thermal comfort of infant bedding [J]. Journal of Textile Research, 2022, 43(08): 189-196.
[9] WU Guoshan, LIU Heqing, WU Shixian, YOU Bo, SONG Xiaopeng. Cooling capacity of personal ventilation systems in different environments [J]. Journal of Textile Research, 2021, 42(10): 139-145.
[10] PAN Mengjiao, LU Yehu, WANG Min. Prediction of thermal comfort for bedding system based on four-node thermoregulation model [J]. Journal of Textile Research, 2021, 42(09): 150-155.
[11] LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202.
[12] WANG Xiaobo, QIAN Xiaoming, WANG Lijing, LIU Yongsheng, BAI He. Review on liquid cooling garment and its feasibility study in fire fighting [J]. Journal of Textile Research, 2021, 42(06): 198-207.
[13] LIU Yuping, LU Yehu, WANG Laili. Research progress on thermal comfort of bedding system [J]. Journal of Textile Research, 2020, 41(01): 190-196.
[14] ZHAO Mengmeng, KE Ying, WANG Faming, LI Jun. Research and development trend of ventilation clothing thermal comfort [J]. Journal of Textile Research, 2019, 40(03): 183-188.
[15] . Relationship between static and dynamic thermal insulation of local or whole body and its model [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 111-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!