Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (11): 225-231.doi: 10.13475/j.fzxb.20220703602

• Comprehensive Review • Previous Articles     Next Articles

Research progress on salt removal from surface of fiber-based interfacial photothermal evaporators

PAN Luqi, REN Lipei, XIAO Xingfang, XU Weilin, ZHANG Qian()   

  1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2022-07-12 Revised:2023-06-17 Online:2023-11-15 Published:2023-12-25

Abstract:

Significance Solar interfacial photothermal evaporation technology possesses the characteristics of high energy conversion efficiency, clean and zero-pollution, which has broad development prospects in the field of seawater desalination and concentrated salt wastewater treatment. However, the salt precipitation caused by the rapid water escape in the process of interfacial evaporation will inhibit the absorption of light and block the vapor overflow channel, which will inevitably reduce the vapor generation rate and the service life of the evaporation device. Fiber materials are one of the ideal materials for designing solar interfacial evaporator surface desalination because of their flexible mechanical strength, low cost, versatility, cutability and processability.

Progress This review covers a variety of studies on photothermal evaporation desalination at fiber-based interfaces and focuses on six desalination strategies based on the characteristics of fiber materials, which are grouped into two categories: active and passive. Washing desalination utilizes the water-washing resistance of fiber materials, the surface salt crystals are easily removed by external rubbing. In order to overcome the above-mentioned possible environmental problems, the regional crystalline salt collection strategy not only removes crystalline salt by simple stripping, but also obtains salt as a by-product and reduces the burden on water bodies. However, active desalination strategies still require external forces to remove surface salt crystals, and the sustainability and simplicity of the evaporator are significantly diminished. Therefore, research has exploited the lightness of fiber materials to produce, a easy-to-flip self-cleaning design, when its gravity changes. The current mainstream research focuses on rejecting salt production at the source. The convection effect takes advantage of the loose and porous nature of the fiber material to prepare highly hydrophilic evaporator to achieve a continuous water supply to satisfy salt ion convection. In addition, directional fluid transport with the aid of external forces can move salt ions to low concentrations, while reducing the effect of gravity on salt ion transport. Since the fiber material is easy for surface modification, it is convenient to prepare the Janus structure with the hydrophobic upper layer and hydrophilic lower layer, which can prevent salt ions from reaching the evaporator surface through water, which avoiding salt crystallization. Finally, this paper analyzes the research progress of fiber for surface desalination of interfacial photothermal evaporators, summarizes the problems confronted in the research, and prospects the new development orientation of fiber-based evaporation devices in the future.

Conclusion and Prospect Fiber-based evaporation devices generally provide promising development applications for solar interface evaporation and desalination designs because of their high evaporation efficiency, sustained treatment of highly concentrated salt solutions, excellent stability and recyclability, and applicability to long-term desalination work. However, the evaporation rate of fiber-based evaporators still needs to be improved when treating saturated brine. In addition, there are still limitations such as easy clogging and difficult removal when treating other contaminants in the bulk water. In conclusion, fiber-based evaporation devices are still immature and full of technical difficulties and multiple challenges. This paper presents some suggestions from the following aspects: 1) to enhance the exploration of multifunctional composite fibers for more application potential in desalination, power generation, sterilization, and impurity removal; and 2) utilizing modern textile technology to design new fibers such as multifunctional hollow fibers, core-sheath structure fibers, shaped fibers, and three-dimensional knitted/woven fabrics to obtain special functions and enhance the vapor generation rate.

Key words: fiber, photothermal conversion, interfacial evaporation, solar interfacial evaporator, salt removal, seawater desalination

CLC Number: 

  • TS101.8

Fig. 1

Strategies for evaporative desalination at fiber-based interfaces"

Tab. 1

Patical work summary of fiber materials for interfacial photothermal desalination design"

材料 除盐策略 NaCl质量
分数/%
蒸发速率 蒸发效率/
%
稳定性 参考文献
碳纳米管嵌入聚丙烯腈非织造布 水洗除盐 21 1.44 kg/(m2·h) 81 15次 [18]
碳纤维基三维锥形蒸发器 水洗除盐 10 3.27 kg/(m2·h) 194.4 10次 [36]
静电纺丝锦纶/碳布 水洗除盐 3.5 1.24 kg/(m2·h) 83 100次 [19]
酚醛树脂/SiO2涂覆玻璃纤维 区域结晶盐收集 25 1.26 kg/(m2·h) 96.7 120 h [21]
亲水MXene装饰蜂窝状织物 区域结晶盐收集 21 1.62 kg/(m2·h) 93.5 25次 [22]
碳涂层织物伞形蒸发器 区域结晶盐收集 20 2.9 kg/(m2·h) 4 d [37]
聚乙烯醇织物包裹膨胀聚乙烯泡沫 自清洁设计 30 1.41 kg/(m2·h) 88.5 30 d [24]
活性炭双层纤维织物 对流效应 3.5 1.59 kg/(m2·h) 93.3 12 h [38]
活性炭棉织物 对流效应 3.5 1.95 kg/(m2·h) 116 10次 [39]
静电纺丝多孔聚氨酯织物 对流效应 20 2.2 kg/(m2·h) 93.5 [40]
静电纺丝SiO2纳米纤维气凝胶 对流效应 20 1.5 kg/(m2·h) 20次 [41]
芳纶织物上侧静电植绒 对流效应 3.5 1.32 kg/(m2·h) 66.3 10 d [42]
碳纤维束穿孔木材 对流效应 3.5 1.7 kg/(m2·h) 94.6 [43]
碳纤维-棉混合织物 对流效应 15 1.87 kg/(m2·h) 83.7 5次 [26]
三明治结构纤维素织物蒸发器 对流效应 3.5 2.5 L/(m2·d) 56±2.5 7 d [25]
静电纺丝石墨烯/玻璃纤维 对流效应 20 1.25 kg/(m2·h) 82 5 d [44]
棉织物涂覆还原氧化石墨烯/海藻酸钠 对流效应 3.5 7.6 kg/(m2·h) 178.6 40次 [45]
聚多巴胺修饰棉线 对流效应 3.5 1.12 kg/(m2·h) 88.8 10次 [46]
还原氧化石墨烯/棉织物 对流效应 饱和溶液 1.47 kg/(m2·h) 16次 [47]
纳米薄片阵列碳布 定向流体传输 25.05 1.63 kg/(m2·h) 91 50次 [28]
聚丙烯腈/硫化铜织物 定向流体传输 21 2.27 kg/(m2·h) 90.2 100 h [30]
聚苯胺纳米棒涂覆棉织物 定向流体传输 21 1.94 kg/(m2·h) 89.9 48 h [29]
静电纺丝聚丙烯腈Janus Janus织物设计 20 1.3 kg/(m2·h) 72 16 d [32]
疏水烟灰沉积亲水棉织物 Janus织物设计 20 1.375 kg/(m2·h) 86.3 100 h [48]
Janus纤维垫结构的悬浮式蒸发器 Janus织物设计 3.5 1.94 kg/(m2·h) 92.7 100 h [33]
静电纺丝碳纳米管聚丙烯腈非织造布 Janus织物设计 20 1.43 kg/(m2·h) 87.5 50次 [49]
静电纺丝炭黑/聚氨酯-碳纳米管海绵 Janus织物设计 25 1.8 kg/(m2·h) 97.2 60 h [50]
[1] MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016. DOI: 10.1126/sciadv.1500323.
[2] CAO S, JIANG Q, WU X, et al. Advances in solar evaporator materials for freshwater generation[J]. J Mater Chem A, 2019, 7(42): 24092-24123.
doi: 10.1039/c9ta06034k
[3] SCHEWE J, HEINKE J, GERTEN D, et al. Multimodel assessment of water scarcity under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3245-3250.
doi: 10.1073/pnas.1222460110 pmid: 24344289
[4] COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608.
doi: 10.1021/nl3012853
[5] ELIMELECH M, PHILLIP William A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
doi: 10.1126/science.1200488 pmid: 21817042
[6] PUGSLEY A, ZACHAROPOULOS A, MONDOL J D, et al. Global applicability of solar desalination[J]. Renewable Energy, 2016, 88: 200-219.
doi: 10.1016/j.renene.2015.11.017
[7] SHENG M, YANG Y, BIN X, et al. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106468.
[8] XU K, WANG C, LI Z, et al. Salt mitigation strategies of solar-driven interfacial desalination[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202007855.
[9] YU X, ZHANG Q, LIU X, et al. Salt-resistive photothermal materials and microstructures for interfacial solar desalination[J]. Frontiers in Energy Research, 2021.DOI: 10.3389/fenrg.2021.721407.
[10] REN H, TANG M, GUAN B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201702590.
[11] HE J, ZHANG Z, XIAO C, et al. High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16308-16318.
[12] BUSH J A, VANNESTE J, CATH T Y. Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: effects of scaling and fouling on performance, efficiency, and salt rejection[J]. Separation and Purification Technology, 2016, 170: 78-91.
doi: 10.1016/j.seppur.2016.06.028
[13] HOEPNER T, LATTEMANN S. Chemical impacts from seawater desalination plants: a case study of the northern Red Sea[J]. Desalination, 2003, 152(1): 133-140.
doi: 10.1016/S0011-9164(02)01056-1
[14] ANDRÉS-MAÑAS J A, ROCA L, RUIZ-AGUIRRE A, et al. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation[J]. Applied Energy, 2020.DOI: 10.1016/j.apenergy.2019.114068.
[15] JIA C, LI Y, YANG Z, et al. Rich mesostructures derived from natural woods for solar steam gener-ation[J]. Joule, 2017, 1(3): 588-599.
doi: 10.1016/j.joule.2017.09.011
[16] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(1): 36-42.
DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emis-sion[J]. Journal of Textile Research, 2022, 43(1): 36-42.
[17] 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173.
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42(12): 166-173.
[18] ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014.
[19] JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. J Mater Chem A, 2018, 6(17): 7942-7949.
doi: 10.1039/C8TA00187A
[20] FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709.
doi: 10.1021/acs.est.7b03040
[21] SHI Y, ZHANG C, LI R, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830.
doi: 10.1021/acs.est.8b03300
[22] LEI Z, SUN X, ZHU S, et al. Nature inspired Mxene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting[J]. Nano-Micro Letters, 2021, 14(1): 1-10.
doi: 10.1007/s40820-021-00751-y
[23] LIU Z, ZHONG Q, WU N, et al. Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy[J]. Desalination, 2021. DOI: 10.1016/j.desal.2021.115072.
[24] XIA Y, LI Y, YUAN S, et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine[J]. J Mater Chem A, 2020, 8(32): 16212-16217.
doi: 10.1039/D0TA04677A
[25] NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalin-ation[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519.
[26] ZHANG Q, XIAO X, ZHAO G, et al. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination[J]. J Mater Chem A, 2021, 9(17): 10945-10952.
doi: 10.1039/D1TA01295A
[27] LIU H, ALAM M K, HE M, et al. Sustainable cellulose aerogel from waste cotton fabric for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 49860-49867.
[28] ZHANG Y, ZHANG H, XIONG T, et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation[J]. Energy & Environmental Science, 2020, 13(12): 4891-4902.
[29] LIU Z, WU B, ZHU B, et al. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201905485.
[30] LIU Z, ZHOU Z, WU N, et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination[J]. ACS Nano, 2021, 15(8): 13007-13018.
doi: 10.1021/acsnano.1c01900 pmid: 34309381
[31] YAO C, LUO M, WANG H, et al. Asymmetric wetting Janus fabrics with double-woven structure for oil/water separation[J]. Journal of Materials Science, 2019, 54(7): 5942-5951.
doi: 10.1007/s10853-018-03241-6
[32] XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018.DOI: 10.1002/aenm.201702884.
[33] DONG X, LI H, GAO L, et al. Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery[J]. Small, 2022.DOI: 10.1002/smll.202107156.
[34] 谢梦玉, 胡啸林, 李星, 等. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(4): 117-123.
XIE Mengyu, HU Xiaolin, LI Xing, et al. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite[J]. Journal of Textile Research, 2022, 43(4): 117-123.
[35] 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121.
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121.
[36] BU Y, ZHOU Y, LEI W, et al. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J]. J Mater Chem A, 2022, 10(6): 2856-2866.
doi: 10.1039/D1TA09288J
[37] KUNJARAM U P U, SONG H, LIU Y, et al. A self-salt-cleaning architecture in cold vapor generation system for hypersaline brines[J]. EcoMat, 2022.DOI: 10.1002/eom2.12168.
[38] FANG Q, LI T, LIN H, et al. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resist-ance[J]. ACS Applied Energy Materials, 2019, 2(6): 4354-4361.
doi: 10.1021/acsaem.9b00562
[39] ZHANG Q, HU R, CHEN Y, et al. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion[J]. Applied Energy, 2020.DOI: 10.1016/j.apenergy.2020.115545.
[40] WEN C, GUO H, YANG J, et al. Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex condit-ions[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.130344.
[41] DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201908269.
[42] GUO Y, JAVED M, LI X, et al. Solar-driven all-in-one interfacial water evaporator based on electrostatic flocking[J]. Advanced Sustainable Systems, 2021.DOI: 10.1002/adsu.202000202.
[43] ZHAO G, CHEN Y, PAN L, et al. Plant-inspired design from carbon fiber toward high-performance salt-resistant solar interfacial evaporation[J]. Solar Energy, 2022, 233: 134-141.
doi: 10.1016/j.solener.2022.01.025
[44] LI D, ZHANG X, ZHANG S, et al. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment[J]. Chemosphere, 2021.DOI: 10.1016/j.chemosphere.2020.128916.
[45] GAO T, WU X, WANG Y, et al. A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss[J]. Solar RRL, 2021.DOI: 10.1002/solr.202100053.
[46] WU X, WU L, TAN J, et al. Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy[J]. J Mater Chem A, 2018, 6(26): 12267-12274.
doi: 10.1039/C8TA03280G
[47] ZHANG Q, YANG H, XIAO X, et al. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam[J]. J Mater Chem A, 2019, 7(24): 14620-14628.
doi: 10.1039/C9TA03045J
[48] GAO S, DONG X, HUANG J, et al. Bioinspired soot-deposited Janus fabrics for sustainable solar steam generation with salt-rejection[J]. Global Challenges, 2019, 3(8): 1-7.
[49] ZHANG W-M, YAN J, SU Q, et al. Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance[J]. Journal of Colloid and Interface Science, 2022, 612: 66-75.
doi: 10.1016/j.jcis.2021.12.093
[50] LI S, QIU F, XIA Y, et al. Integrating a self-floating janus TPC@CB sponge for efficient solar-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19409-19418.
[1] LIU Jinxin, ZHOU Yuxuan, ZHU Borong, WU Haibo, ZHANG Keqin. Properties and filtration mechanism of thermal bonding polyethylene/polypropylene bicomponent spunbond nonwovens [J]. Journal of Textile Research, 2024, 45(01): 23-29.
[2] RONG Chengbao, SUN Hui, YU Bin. Preparation and antibacterial performances of silver-copper bimetallic nanoparticles/polylactic acid composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(01): 48-55.
[3] CHEN Jiangping, GUO Chaoyang, ZHANG Qijun, WU Renxiang, ZHONG Lubin, ZHENG Yuming. Preparation and air filtration performance of electrospun polyamide 6/polystyrene composite membranes [J]. Journal of Textile Research, 2024, 45(01): 56-64.
[4] XIE Yanxia, ZHANG Weiqiang, XU Yaning, ZHAO Shuhan, YIN Wenxuan, ZHANG Wenqiang, HAN Xu. Migration properties of commercial polyethylene terephthalate staple fiber oligomers and influencing factors thereof [J]. Journal of Textile Research, 2024, 45(01): 65-73.
[5] YANG Liu, LI Yujia, YU Yan, MA Lei, ZHANG Ruiyun. Color prediction of fiber-colored fabrics based on Neugebauer equation [J]. Journal of Textile Research, 2024, 45(01): 83-89.
[6] YAO Chenxi, WAN Ailan. Thermal and moisture comfort of polybutylene terephthalate/polyethylene terephthalate weft-knitted sports T-shirt fabrics [J]. Journal of Textile Research, 2024, 45(01): 90-98.
[7] WANG Peng, SHEN Jiakun, LU Yinhui, SHENG Hongmei, WANG Zongqian, LI Changlong. Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes [J]. Journal of Textile Research, 2023, 44(12): 10-16.
[8] GUAN Tuxiang, WU Jian, BAO Ningzhong. Research progress in graphene fiber-based flexible supercapacitors prepared by microfluidic spinning [J]. Journal of Textile Research, 2023, 44(12): 205-215.
[9] SHI Hongyu, WEI Yingjie, GUAN Shengqi, LI Yi. Cotton foreign fibers detection algorithm based on residual structure [J]. Journal of Textile Research, 2023, 44(12): 35-42.
[10] LI Ling, DING Qian, WANG Jun. Model construction and analysis based on rotor spinning merging effect [J]. Journal of Textile Research, 2023, 44(12): 43-49.
[11] LEI Caihong, YU Linshuang, JIN Wanhui, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/chitosan composite fiber membrane [J]. Journal of Textile Research, 2023, 44(11): 19-26.
[12] XU Zhihao, XU Danyao, LI Yan, WANG Lu. Research progress in nanofiber-based biosensors based on surface enhanced Raman spectroscopy [J]. Journal of Textile Research, 2023, 44(11): 216-224.
[13] WANG Xixian, GUO Tianguang, WANG Dengke, NIU Shuai, JIA Lin. Preparation and long-lasting performance of polyacrylonitrile/Ag composite nanofiber membrane for high efficiency filtration [J]. Journal of Textile Research, 2023, 44(11): 27-35.
[14] TAN Jing, SHI Xin, YU Jingchao, CHENG Lisheng, YANG Tao, YANG Weimin. Preparation and electrical conductivity of carbon nanocoating on glass fiber surface by polymer pyrolysis [J]. Journal of Textile Research, 2023, 44(11): 36-44.
[15] WANG Qing, LIANG Gaoxiang, YIN Junqing, SHENG Xiaochao, LÜ Xushan, DANG Shuai. Establishment of novel model and performance analysis of airflow drafting channel [J]. Journal of Textile Research, 2023, 44(11): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!