Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (11): 225-231.doi: 10.13475/j.fzxb.20220703602
• Comprehensive Review • Previous Articles Next Articles
PAN Luqi, REN Lipei, XIAO Xingfang, XU Weilin, ZHANG Qian()
CLC Number:
[1] | MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016. DOI: 10.1126/sciadv.1500323. |
[2] |
CAO S, JIANG Q, WU X, et al. Advances in solar evaporator materials for freshwater generation[J]. J Mater Chem A, 2019, 7(42): 24092-24123.
doi: 10.1039/c9ta06034k |
[3] |
SCHEWE J, HEINKE J, GERTEN D, et al. Multimodel assessment of water scarcity under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3245-3250.
doi: 10.1073/pnas.1222460110 pmid: 24344289 |
[4] |
COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters, 2012, 12(7): 3602-3608.
doi: 10.1021/nl3012853 |
[5] |
ELIMELECH M, PHILLIP William A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
doi: 10.1126/science.1200488 pmid: 21817042 |
[6] |
PUGSLEY A, ZACHAROPOULOS A, MONDOL J D, et al. Global applicability of solar desalination[J]. Renewable Energy, 2016, 88: 200-219.
doi: 10.1016/j.renene.2015.11.017 |
[7] | SHENG M, YANG Y, BIN X, et al. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106468. |
[8] | XU K, WANG C, LI Z, et al. Salt mitigation strategies of solar-driven interfacial desalination[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202007855. |
[9] | YU X, ZHANG Q, LIU X, et al. Salt-resistive photothermal materials and microstructures for interfacial solar desalination[J]. Frontiers in Energy Research, 2021.DOI: 10.3389/fenrg.2021.721407. |
[10] | REN H, TANG M, GUAN B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201702590. |
[11] | HE J, ZHANG Z, XIAO C, et al. High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16308-16318. |
[12] |
BUSH J A, VANNESTE J, CATH T Y. Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: effects of scaling and fouling on performance, efficiency, and salt rejection[J]. Separation and Purification Technology, 2016, 170: 78-91.
doi: 10.1016/j.seppur.2016.06.028 |
[13] |
HOEPNER T, LATTEMANN S. Chemical impacts from seawater desalination plants: a case study of the northern Red Sea[J]. Desalination, 2003, 152(1): 133-140.
doi: 10.1016/S0011-9164(02)01056-1 |
[14] | ANDRÉS-MAÑAS J A, ROCA L, RUIZ-AGUIRRE A, et al. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation[J]. Applied Energy, 2020.DOI: 10.1016/j.apenergy.2019.114068. |
[15] |
JIA C, LI Y, YANG Z, et al. Rich mesostructures derived from natural woods for solar steam gener-ation[J]. Joule, 2017, 1(3): 588-599.
doi: 10.1016/j.joule.2017.09.011 |
[16] | 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(1): 36-42. |
DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emis-sion[J]. Journal of Textile Research, 2022, 43(1): 36-42. | |
[17] | 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173. |
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42(12): 166-173. | |
[18] | ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. |
[19] |
JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. J Mater Chem A, 2018, 6(17): 7942-7949.
doi: 10.1039/C8TA00187A |
[20] |
FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709.
doi: 10.1021/acs.est.7b03040 |
[21] |
SHI Y, ZHANG C, LI R, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830.
doi: 10.1021/acs.est.8b03300 |
[22] |
LEI Z, SUN X, ZHU S, et al. Nature inspired Mxene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting[J]. Nano-Micro Letters, 2021, 14(1): 1-10.
doi: 10.1007/s40820-021-00751-y |
[23] | LIU Z, ZHONG Q, WU N, et al. Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy[J]. Desalination, 2021. DOI: 10.1016/j.desal.2021.115072. |
[24] |
XIA Y, LI Y, YUAN S, et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine[J]. J Mater Chem A, 2020, 8(32): 16212-16217.
doi: 10.1039/D0TA04677A |
[25] | NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalin-ation[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519. |
[26] |
ZHANG Q, XIAO X, ZHAO G, et al. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination[J]. J Mater Chem A, 2021, 9(17): 10945-10952.
doi: 10.1039/D1TA01295A |
[27] | LIU H, ALAM M K, HE M, et al. Sustainable cellulose aerogel from waste cotton fabric for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 49860-49867. |
[28] | ZHANG Y, ZHANG H, XIONG T, et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation[J]. Energy & Environmental Science, 2020, 13(12): 4891-4902. |
[29] | LIU Z, WU B, ZHU B, et al. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201905485. |
[30] |
LIU Z, ZHOU Z, WU N, et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination[J]. ACS Nano, 2021, 15(8): 13007-13018.
doi: 10.1021/acsnano.1c01900 pmid: 34309381 |
[31] |
YAO C, LUO M, WANG H, et al. Asymmetric wetting Janus fabrics with double-woven structure for oil/water separation[J]. Journal of Materials Science, 2019, 54(7): 5942-5951.
doi: 10.1007/s10853-018-03241-6 |
[32] | XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018.DOI: 10.1002/aenm.201702884. |
[33] | DONG X, LI H, GAO L, et al. Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery[J]. Small, 2022.DOI: 10.1002/smll.202107156. |
[34] | 谢梦玉, 胡啸林, 李星, 等. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(4): 117-123. |
XIE Mengyu, HU Xiaolin, LI Xing, et al. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite[J]. Journal of Textile Research, 2022, 43(4): 117-123. | |
[35] | 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121. |
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121. | |
[36] |
BU Y, ZHOU Y, LEI W, et al. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J]. J Mater Chem A, 2022, 10(6): 2856-2866.
doi: 10.1039/D1TA09288J |
[37] | KUNJARAM U P U, SONG H, LIU Y, et al. A self-salt-cleaning architecture in cold vapor generation system for hypersaline brines[J]. EcoMat, 2022.DOI: 10.1002/eom2.12168. |
[38] |
FANG Q, LI T, LIN H, et al. Highly efficient solar steam generation from activated carbon fiber cloth with matching water supply and durable fouling resist-ance[J]. ACS Applied Energy Materials, 2019, 2(6): 4354-4361.
doi: 10.1021/acsaem.9b00562 |
[39] | ZHANG Q, HU R, CHEN Y, et al. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion[J]. Applied Energy, 2020.DOI: 10.1016/j.apenergy.2020.115545. |
[40] | WEN C, GUO H, YANG J, et al. Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex condit-ions[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.130344. |
[41] | DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201908269. |
[42] | GUO Y, JAVED M, LI X, et al. Solar-driven all-in-one interfacial water evaporator based on electrostatic flocking[J]. Advanced Sustainable Systems, 2021.DOI: 10.1002/adsu.202000202. |
[43] |
ZHAO G, CHEN Y, PAN L, et al. Plant-inspired design from carbon fiber toward high-performance salt-resistant solar interfacial evaporation[J]. Solar Energy, 2022, 233: 134-141.
doi: 10.1016/j.solener.2022.01.025 |
[44] | LI D, ZHANG X, ZHANG S, et al. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment[J]. Chemosphere, 2021.DOI: 10.1016/j.chemosphere.2020.128916. |
[45] | GAO T, WU X, WANG Y, et al. A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss[J]. Solar RRL, 2021.DOI: 10.1002/solr.202100053. |
[46] |
WU X, WU L, TAN J, et al. Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy[J]. J Mater Chem A, 2018, 6(26): 12267-12274.
doi: 10.1039/C8TA03280G |
[47] |
ZHANG Q, YANG H, XIAO X, et al. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam[J]. J Mater Chem A, 2019, 7(24): 14620-14628.
doi: 10.1039/C9TA03045J |
[48] | GAO S, DONG X, HUANG J, et al. Bioinspired soot-deposited Janus fabrics for sustainable solar steam generation with salt-rejection[J]. Global Challenges, 2019, 3(8): 1-7. |
[49] |
ZHANG W-M, YAN J, SU Q, et al. Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance[J]. Journal of Colloid and Interface Science, 2022, 612: 66-75.
doi: 10.1016/j.jcis.2021.12.093 |
[50] | LI S, QIU F, XIA Y, et al. Integrating a self-floating janus TPC@CB sponge for efficient solar-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19409-19418. |
[1] | LIU Jinxin, ZHOU Yuxuan, ZHU Borong, WU Haibo, ZHANG Keqin. Properties and filtration mechanism of thermal bonding polyethylene/polypropylene bicomponent spunbond nonwovens [J]. Journal of Textile Research, 2024, 45(01): 23-29. |
[2] | RONG Chengbao, SUN Hui, YU Bin. Preparation and antibacterial performances of silver-copper bimetallic nanoparticles/polylactic acid composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(01): 48-55. |
[3] | CHEN Jiangping, GUO Chaoyang, ZHANG Qijun, WU Renxiang, ZHONG Lubin, ZHENG Yuming. Preparation and air filtration performance of electrospun polyamide 6/polystyrene composite membranes [J]. Journal of Textile Research, 2024, 45(01): 56-64. |
[4] | XIE Yanxia, ZHANG Weiqiang, XU Yaning, ZHAO Shuhan, YIN Wenxuan, ZHANG Wenqiang, HAN Xu. Migration properties of commercial polyethylene terephthalate staple fiber oligomers and influencing factors thereof [J]. Journal of Textile Research, 2024, 45(01): 65-73. |
[5] | YANG Liu, LI Yujia, YU Yan, MA Lei, ZHANG Ruiyun. Color prediction of fiber-colored fabrics based on Neugebauer equation [J]. Journal of Textile Research, 2024, 45(01): 83-89. |
[6] | YAO Chenxi, WAN Ailan. Thermal and moisture comfort of polybutylene terephthalate/polyethylene terephthalate weft-knitted sports T-shirt fabrics [J]. Journal of Textile Research, 2024, 45(01): 90-98. |
[7] | WANG Peng, SHEN Jiakun, LU Yinhui, SHENG Hongmei, WANG Zongqian, LI Changlong. Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes [J]. Journal of Textile Research, 2023, 44(12): 10-16. |
[8] | GUAN Tuxiang, WU Jian, BAO Ningzhong. Research progress in graphene fiber-based flexible supercapacitors prepared by microfluidic spinning [J]. Journal of Textile Research, 2023, 44(12): 205-215. |
[9] | SHI Hongyu, WEI Yingjie, GUAN Shengqi, LI Yi. Cotton foreign fibers detection algorithm based on residual structure [J]. Journal of Textile Research, 2023, 44(12): 35-42. |
[10] | LI Ling, DING Qian, WANG Jun. Model construction and analysis based on rotor spinning merging effect [J]. Journal of Textile Research, 2023, 44(12): 43-49. |
[11] | LEI Caihong, YU Linshuang, JIN Wanhui, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/chitosan composite fiber membrane [J]. Journal of Textile Research, 2023, 44(11): 19-26. |
[12] | XU Zhihao, XU Danyao, LI Yan, WANG Lu. Research progress in nanofiber-based biosensors based on surface enhanced Raman spectroscopy [J]. Journal of Textile Research, 2023, 44(11): 216-224. |
[13] | WANG Xixian, GUO Tianguang, WANG Dengke, NIU Shuai, JIA Lin. Preparation and long-lasting performance of polyacrylonitrile/Ag composite nanofiber membrane for high efficiency filtration [J]. Journal of Textile Research, 2023, 44(11): 27-35. |
[14] | TAN Jing, SHI Xin, YU Jingchao, CHENG Lisheng, YANG Tao, YANG Weimin. Preparation and electrical conductivity of carbon nanocoating on glass fiber surface by polymer pyrolysis [J]. Journal of Textile Research, 2023, 44(11): 36-44. |
[15] | WANG Qing, LIANG Gaoxiang, YIN Junqing, SHENG Xiaochao, LÜ Xushan, DANG Shuai. Establishment of novel model and performance analysis of airflow drafting channel [J]. Journal of Textile Research, 2023, 44(11): 52-60. |
|