Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (09): 134-143.doi: 10.13475/j.fzxb.20220706001
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
LIU Qixia1,2, ZHANG Tianhao1, JI Tao1,2, GE Jianlong1,2, SHAN Haoru1,2()
CLC Number:
[1] |
PUGLISI R, MINEO P G, PAPPALARDO A, et al. Supramolecular detection of a nerve agent simulant by fluorescent Zn-Salen oligomer receptors[J]. Molecules, 2019, 24(11): 2160-2173.
doi: 10.3390/molecules24112160 |
[2] | PICARD B, CHATAIGNER I, MADDALUNO J, et al. Introduction to chemical warfare agents, relevant simulants and modern neutralization methods[J]. Organic & Biomolecular Chemistry, 2019, 17(27): 6528-6537. |
[3] |
DECOSTE J B, PETERSON G W. Metal-organic frameworks for air purification of toxic chemicals[J]. Chemical Reviews, 2014, 114(11): 5695-727.
doi: 10.1021/cr4006473 pmid: 24750116 |
[4] |
VALE A, MARRS T C, RICE P. Chemical terrorism and nerve agents[J]. Medicine, 2007, 35(2): 573-575.
doi: 10.1016/j.mpmed.2007.07.012 |
[5] | OHEIX E, GRAVEL E, DORIS E. Catalytic processes for the neutralization of sulfur mustard[J]. Chemistry-A European Journal, 2021(1): 54-68. |
[6] | 吕凯敏, 戴宏钦. 化学防护服的研究进展[J]. 纺织学报, 2020, 41(5): 191-196. |
LÜ Kaimin, DAI Hongqin. Research progress of chemical protective clothing[J]. Journal of Textile Research, 2020, 41(5): 191-196. | |
[7] | 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(7): 207-216. |
LI Chenfei, LIU Yuanjun, ZHAO Xiaoming. Research progress of biochemical protective clothing[J]. Journal of Textile Research, 2022, 43(7): 207-216. | |
[8] | 刘其霞, 周逸如, 杨智联, 等. 透气式球形活性碳化学防护服复合面料的制备及其性能[J]. 纺织学报, 2019, 40(6): 183-189. |
LIU Qixia, ZHOU Yiru, YANG Zhilian, et al. Preparation and properties of spherical activated carbon-based composite fabric for permeable chemical protective clothing[J]. Journal of Textile Research, 2019, 40(6): 183-189. | |
[9] |
ZHAO S Y, CHEN Z Y, WEI N, et al. Highly efficient cooperative catalysis of single-site lewis acid and brønsted acid in a metal-organic framework for the biginelli reaction[J]. Inorganic Chemistry, 2019, 58(12): 7657-7661.
doi: 10.1021/acs.inorgchem.9b00816 |
[10] |
JOSEPH E, MONDLOCH, MICHAEL J, et al. Destruction of chemical warfare agents using metal-organic frameworks[J]. Nature Materials, 2015, 14(5): 512-516.
doi: 10.1038/nmat4238 pmid: 25774952 |
[11] |
LIU Y, XUAN W, CUI Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation[J]. Advanced Materials, 2010, 22(37): 4112-4135.
doi: 10.1002/adma.v22:37 |
[12] |
CHEN Z, ISLAMOGLU T, FARHA O K. Toward base heterogenization: a zirconium metal-organic framework/dendrimer or polymer mixture for rapid hydrolysis of a nerve-agent simulant[J]. ACS Applied Nano Materials, 2019, 2(2): 1005-1008.
doi: 10.1021/acsanm.8b02292 |
[13] |
MOON S Y, LIU Y Y, JOSEPH T, et al. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework[J]. Angewandte Chemie, 2015, 127(23): 6899-6903.
doi: 10.1002/ange.v127.23 |
[14] |
KATZ M J, MOON S Y, MONDLOCH J E, et al. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2[J]. Chemical Science, 2015, 6(4): 2286-2291.
doi: 10.1039/c4sc03613a pmid: 29308142 |
[15] |
ZHOU Y, GAO Q, ZHANG L, et al. Combining two into one: a dual-function H5PV2Mo10O40@MOF-808 composite as a versatile decontaminant for sulfur mustard and soman[J]. Inorganic Chemistry, 2020, 59(16): 11595-11605.
doi: 10.1021/acs.inorgchem.0c01392 |
[16] |
PETERSON G W, MOON S Y, WAGNER G W, et al. Tailoring the pore size and functionality of UiO-type metal-organic frameworks for optimal nerve agent destruction[J]. Inorganic Chemistry, 2015, 54(20): 9684-9686.
doi: 10.1021/acs.inorgchem.5b01867 pmid: 26431370 |
[17] | 张博宁, 孙亚昕, 吴遥, 等. MOF-808@PAN纳米纤维膜的制备及其降解芥子气模拟剂性能[J]. 精细化工, 2021, 38(6):1177-1182. |
ZHANG Boning, SUN Yaxin, WU Yao, et al. Preparation of MOF-808@PAN-nanofiber membrane and its degradation performance of mustard gas simulation agent[J]. Fine Chemicals. 2021, 38(6): 1177-1182. | |
[18] | ZHAO J, LEE D T, YAGA R W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs[J]. Angewandte Chemie, 2016, 55(42): 13224-13228. |
[19] | 李阳, 沈晨康, 王碧佳, 等. 负载UiO-66-NH2棉织物的制备及化学战剂降解性能表征[J]. 纤维素科学与技术, 2020, 28(1): 8-15,25. |
LI Yang, SHEN Chenkang, WANG Bijia, et al. Preparation of UiO-66-NH2 loaded cotton fabric and its characterization of chemical warfare agents degrad-ation[J]. Journal of Cellulose Science and Technology, 2020, 28(1): 8-15,25. | |
[20] |
JIANG F, WANG S S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis, 2020, 10(19):11493-11509.
doi: 10.1021/acscatal.0c03324 |
[1] | LI Hongying, XU Yi, YANG Fan, REN Ruipeng, ZHOU Quan, WU Lijie, LÜ Yongkang. Preparation of three-dimensional ping-pong chrysanthemum-like CdS/BiOBr composite and its application on photocatalytic degradation of Rhodamine B [J]. Journal of Textile Research, 2023, 44(09): 124-133. |
[2] | QIAN Yaowei, YIN Lianbo, LI Jiawei, YANG Xiaoming, LI Yaobang, QI Dongming. Preparation and properties of flame retardant cotton fabrics by layer-by-layer assembly of polyvinylphosphonic acid and polyethylene polyamine [J]. Journal of Textile Research, 2023, 44(09): 144-152. |
[3] | WANG Guoqin, FU Xiaohang, ZHU Yuke, WU Liguang, WANG Ting, JIANG Xiaojia, CHEN Huali. Photodegradation mechanism and pathway of visible light-response mesoporous TiO2 for Rhodamine B [J]. Journal of Textile Research, 2023, 44(05): 155-163. |
[4] | ZHOU Tang, WANG Dengbing, ZHAO Lei, LIU Zuyi, FENG Quan. Preparation of bacterial cellulose/Au film loaded with tungsten trioxide and its catalytic performance [J]. Journal of Textile Research, 2023, 44(04): 16-23. |
[5] | LI Yu, FU Jiajia, CAVACO-PAULO Artur, WANG Hongbo, GAO Weidong. Structural changes and effects of bacterial community in bamboo retting [J]. Journal of Textile Research, 2023, 44(03): 96-103. |
[6] | CHEN Mingxing, ZHANG Wei, WANG Xinya, XIAO Changfa. Research progress of preparation of nanofiber-supported catalysts and application thereof in environmental protection [J]. Journal of Textile Research, 2023, 44(01): 209-218. |
[7] | HU Qian, YANG Taoyu, ZHU Feichao, LÜ Wangyang, WU Minghua, YU Deyou. Peracetic acid activation for efficient degradation of p-nitrophenol by mixed-valence iron-based metal-organic framework [J]. Journal of Textile Research, 2022, 43(11): 133-140. |
[8] | ZHENG Linjuan, YU Jia, YIN Chong, LIANG Zhijie, MAO Qinghui. Preparation and photocatalytic properties of cotton fabrics loaded with polymetallic organic framework material [J]. Journal of Textile Research, 2022, 43(10): 106-111. |
[9] | FENG Yan, LI Liang, LIU Shuping, LI Shujing, LIU Rangtong. Photocatalytic synergistic efficiency of viscose fabric loaded with nitrogen carbon quantum dots/titanium dioxide [J]. Journal of Textile Research, 2022, 43(10): 112-118. |
[10] | ZHOU Xiaoju, HU Zhenglong, REN Yiming, XIE Landong. Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst [J]. Journal of Textile Research, 2022, 43(10): 97-105. |
[11] | YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation [J]. Journal of Textile Research, 2022, 43(09): 149-155. |
[12] | WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal\|organic framework/activated carbon fiber composites [J]. Journal of Textile Research, 2022, 43(08): 126-131. |
[13] | ZHANG Yaning, ZHANG Hui, SONG Yueyue, LI Wenming, LI Wenjun, YAO Jiale. Preparation of discarded mask-based ZIF-8/Ag/TiO2 composite and its photocatalytic property for dye degradation [J]. Journal of Textile Research, 2022, 43(07): 111-120. |
[14] | SHAO Jingfeng, DONG Mengyuan. Influence of performance degradation of spinning frames on yarn quality under dependent competition failure [J]. Journal of Textile Research, 2022, 43(06): 171-179. |
[15] | QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36. |
|