Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (02): 176-183.doi: 10.13475/j.fzxb.20220806808
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
QU Lianyi1, LIU Jianglong1, XU Yingjun1(), WANG Yuzhong2
CLC Number:
[1] |
QIU Q, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2019.123241.
doi: 10.1016/j.cej.2019.123241 |
[2] | 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179. |
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179. | |
[3] |
LIU C, SHAN H, CHEN X, et al. Novel inorganic-based N-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection[J]. ACS Appl Mater Interfaces, 2018, 10(51): 44209-44215.
doi: 10.1021/acsami.8b18322 |
[4] |
KONG Q, LI Z, DING F, et al. Hydrophobic N-halamine based POSS block copolymer porous films with antibacterial and resistance of bacterial adsorption performances[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.128407.
doi: 10.1016/j.cej.2021.128407 |
[5] |
SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3): 219-242.
doi: 10.1007/s40820-015-0040-x pmid: 30464967 |
[6] |
LALLO Da Silva B, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification[J]. Colloids and Surfaces B: Biointerfaces, 2019, 177: 440-447.
doi: S0927-7765(19)30087-6 pmid: 30798065 |
[7] | 戴沈华, 翁良, 李冰艳, 等. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(8): 96-101. |
DAI Shenhua, WENG Liang, LI Bingyan, et al. Preparation and properties of nano-ZnO loaded polyurethane/polyester foamed composite sponge[J]. Journal of Textile Research, 2021, 42(8): 96-101.
doi: 10.1177/004051757204200205 |
|
[8] |
CABRAL R L B, GALVÃO F M F, SOUTO Silva K K O D, et al. Surface modification of ZnO quantum dots coated polylactic acid knitted fabric for photocatalytic application[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.52381.
doi: 10.1002/app.52381 |
[9] |
PRASAD V, ARPUTHARAJ A, BHARIMALLA A, et al. Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO[J]. Applied Surface Science, 2016, 390: 936-940.
doi: 10.1016/j.apsusc.2016.08.155 |
[10] |
SALAT M, PETKOVA P, HOYO J, et al. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive[J]. Carbohydrate Polymers, 2018, 189: 198-203.
doi: S0144-8617(18)30181-4 pmid: 29580399 |
[11] |
ARPUTHARAJ A, NADANATHANGAM V, SHUKLA S R. A simple and efficient protocol to develop durable multifunctional property to cellulosic materials using in situ generated nano-ZnO[J]. Cellulose, 2017, 24(8): 3399-3410.
doi: 10.1007/s10570-017-1335-5 |
[12] |
WANG C, LV J, REN Y, et al. Cotton fabric with plasma pretreatment and ZnO/carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property[J]. Carbohydrate Polymers, 2016, 138: 106-113.
doi: 10.1016/j.carbpol.2015.11.046 pmid: 26794743 |
[13] |
EKANAYAKE U M, DISSANAYAKE D, RATHUWADU N, et al. Facile fabrication of fluoro-polymer self-assembled ZnO nanoparticles mediated, durable and robust omniphobic surfaces on polyester fabrics[J]. Journal of Fluorine Chemistry, 2020. DOI:10.1016/j.jfluchem.2020.109565.
doi: 10.1016/j.jfluchem.2020.109565 |
[14] |
WANG M, ZHANG M, PANG L, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance[J]. Journal of Colloid and Interface Science, 2019, 537: 91-100.
doi: S0021-9797(18)31304-3 pmid: 30423492 |
[15] |
ZHANG D, CHEN L, ZANG C, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262 |
[16] |
ZHANG M, PANG J, BAO W, et al. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation[J]. Applied Surface Science, 2017, 419: 16-23.
doi: 10.1016/j.apsusc.2017.05.008 |
[17] |
GUO Q, CHEN J, WANG J, et al. Recent progress in synthesis and application of mussel-inspired adhe-sives[J]. Nanoscale, 2020, 12(3): 1307-1324.
doi: 10.1039/C9NR09780E |
[18] | NORTH M A, DEL Grosso C A, WILKER J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7866-7872. |
[19] |
YANG Y, JI H, DUAN H, et al. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications[J]. Polymer Chemistry, 2019, 10(33): 4537-4550.
doi: 10.1039/C9PY00846B |
[20] |
YANG Y, ZHU W, SHI B, et al. Construction of a thermo-responsive polymer brush decorated Fe3O4@catechol-formaldehyde resin core-shell nanosphere stabilized carbon dots/PdNP nanohybrid and its application as an efficient catalyst[J]. Journal of Materials Chemistry A, 2020, 8(7): 4017-4029.
doi: 10.1039/C9TA12614G |
[21] |
XU C L, WANG Y Z. Novel dual superlyophobic materials in water-oil systems: under oil magneto-fluid transportation and oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(7): 2935-2941.
doi: 10.1039/C7TA10739K |
[22] |
NA J H, KANG Y C, PARK S K. Electrospun MOF-based ZnSe nanocrystals confined in N-doped mesoporous carbon fibers as anode materials for potassium ion batteries with long-term cycling stability[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.131651.
doi: 10.1016/j.cej.2021.131651 |
[23] |
LI X, WANG L, LI X, et al. Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber[J]. Carbon, 2021, 172: 15-25.
doi: 10.1016/j.carbon.2020.09.068 |
[24] |
DONG F, LIU H, HO W K, et al. (NH4)2CO3 mediated hydrothermal synthesis of N-doped (BiO)2CO3 hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning[J]. Chemical Engineering Journal, 2013, 214: 198-207.
doi: 10.1016/j.cej.2012.10.039 |
[25] |
LI Y, ZHANG W, ZHAO J, et al. A route of alkylated carbon black with hydrophobicity, high dispersibility and efficient thermal conductivity[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.147858.
doi: 10.1016/j.apsusc.2020.147858 |
[26] | ZHANG Y, YANG Y, DUAN H, et al. Mussel-inspired catechol-formaldehyde resin-coated Fe3O4 core-shell magnetic nanospheres: an effective catalyst support for highly active palladium nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44535-44545. |
[27] |
CUI D, SHI B, XIA Z, et al. Construction of polymer-decorated Fe3O4@catechol-formaldehyde resin amphiphilic Janus nanospheres for catalytic applica-tions[J]. ACS Applied Nano Materials, 2022, 5(4): 5660-5669.
doi: 10.1021/acsanm.2c00595 |
[28] |
BHARATHI P, HARISH S, ARCHANA J, et al. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: the synergistic effect of photocatalysis for the mineralization of organic pollutant in water[J]. Applied Surface Science, 2019, 484: 884-891.
doi: 10.1016/j.apsusc.2019.03.131 |
[29] |
ZANG Z, TANG X. Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method[J]. Journal of Alloys and Compounds, 2015, 619: 98-101.
doi: 10.1016/j.jallcom.2014.09.072 |
[30] |
GAN D, XING W, JIANG L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-lignin chemistry nanoparticles-triggered dynamic redox catechol[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8 |
[31] | NIYONSHUTI I I, KRISHNAMURTHI V R, OKYERE D, et al. Polydopamine surface coating synergizes the antimicrobial activity of silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40067-40077. |
[1] | WANG Jinkun, LIU Xiuming, FANG Kuanjun, QIAO Xiran, ZHANG Shuai, LIU Dongdong. Enhancement of anti-wrinkle properties of cotton fabrics by reactive dyeing with two vinyl sulphone groups [J]. Journal of Textile Research, 2023, 44(02): 207-213. |
[2] | DING Juan, LIU Yang, ZHANG Xiaofei, HAO Keqian, ZONG Meng, KONG Que. Preparation of Fe/C porous carbon material and microwave absorption properties of coated cotton fabrics [J]. Journal of Textile Research, 2023, 44(02): 191-198. |
[3] | JIANG Qi, LIU Yun, ZHU Ping. Preparation and properties of flame retardant/anti-ultraviolet cotton fabrics with tea polyphenol based flame retardants [J]. Journal of Textile Research, 2023, 44(02): 222-229. |
[4] | FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118. |
[5] | QIAO Xiran, FANG Kuanjun, LIU Xiuming, GONG Jixian, ZHANG Shuai, ZHANG Min. Different influence of hydroxyethyl methyl cellulose pretreatment on surface properties of cotton and polyamide [J]. Journal of Textile Research, 2022, 43(11): 127-132. |
[6] | ZHANG Diandian, YU Mengnan, LI Min, LIU Mingming, FU Shaohai. Preparation and antifouling properties of super-slip cotton fabric based on polymer microspheres grafted with silicone oil [J]. Journal of Textile Research, 2022, 43(10): 119-125. |
[7] | CHENG Lüzhu, WANG Zongqian, SHENG Hongmei, ZHONG Hui, XIA Liping. Comparison of test methods for permethrin content in polyamide fabrics [J]. Journal of Textile Research, 2022, 43(09): 143-148. |
[8] | ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96. |
[9] | LI Na, WANG Xiao, LI Zhenbao, LI Qian, DU Bing. Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide [J]. Journal of Textile Research, 2022, 43(07): 97-103. |
[10] | YANG Yao, CHENG Wei, YU Yuanyuan, WANG Qiang, WANG Ping, ZHOU Man. Application of antibacterial and antibacterial adhesion finishing agents in cotton fabric modification [J]. Journal of Textile Research, 2022, 43(07): 104-110. |
[11] | LI Pingyang, FU Can, DONG Lingling. Preparation and performance of flame retardant and hydrophobic cotton fabric [J]. Journal of Textile Research, 2022, 43(06): 107-114. |
[12] | WANG Zongqian, CHENG Lüzhu, JIN Xianhua, XIA Liping. Testing method for permethrin content in cotton fabrics based on use of ultraviolet spectroscopy [J]. Journal of Textile Research, 2022, 43(06): 127-132. |
[13] | LIU Yu, XIE Ruyi, SONG Yawei, QI Yuanzhang, WANG Hui, FANG Kuanjun. One-bath pad dyeing technology for polyester/cotton fabric [J]. Journal of Textile Research, 2022, 43(05): 18-25. |
[14] | HOU Qianqian, LI Wenxi, ZHAO Meihua. Cyanotype process of cotton fabric under photocatalytic conditions [J]. Journal of Textile Research, 2022, 43(04): 110-116. |
[15] | WANG Dongwei, FANG Kuanjun, LIU Xiuming, ZHANG Xinqing, AN Fangfang. Preparation of amino-modified Reactive Red 195/polymer nanospheres and its application on dyeing of cotton fabrics [J]. Journal of Textile Research, 2022, 43(04): 90-96. |
|