Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (02): 199-206.doi: 10.13475/j.fzxb.20220807508

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Color gamut expansion and color prediction of natural dye-dyed wool fibers

JIANG Yang1, CUI Biao1, SHAN Chuanlei2, LIU Yin2, ZHANG Yanhong3, XU Changhai1()   

  1. 1. Qingdao University, Qingdao, Shandong 266071, China
    2. Qingdao Bangte Ecological Textile Technology Co., Ltd., Qingdao, Shandong 266000, China
    3. Weiqiao Textile Co., Ltd., Binzhou, Shandong 256200, China
  • Received:2022-08-17 Revised:2022-11-18 Online:2023-02-15 Published:2023-03-07

Abstract:

Objective The exceptional benefits of wool fibers in terms of warmth retention, air and moisture permeability, and distinctive garment appearance make the wool fibers appealing. The value of finished wool clothing can be increased by using natural dyes to color the wool fibers. Natural dyes' limited color gamut, however, prevents them from being widely used due to issues in printing and dyeing wool fibers.
Method In order to enrich the color gamut of wool fibers dyed with natural dyes, natural red, yellow and blue, the three primary dyes, were chosen to dye wool fabrics and fibers with the one bath dyeing based on the use of fiber color matching method. The color prediction of fabric dyed with mixed dyes and mixed colored fibers was made based on Kubelka-Munk single constant theoretical model and Stearns-Noechel model, respectively.
Results The pH values have an effect on the depth of shade(K/S) for wool fibers colored with natural dyes(as shown in Tab. 1). The K/S value of the sample colored with natural red and blue dyes was increased from 3.89 to 17.82 and from 2.07 to 10.73 respectively as the pH value reduced from 4 to 2, while the sample dyed with natural yellow dye was decreased from 3.62 to 1.51 as the pH value decreased from 4 to 2. When the dye solution comprises natural red dyes, the hue angle h value of the fabric dyed using the one bath dyeing method ranged in 0°-24° and 324°-360°. The brightness value L* of the mixed color fiber system was higher than that of fabric dyed using the one bath dyeing method, the color saturation value (C*) decreased, and the hue angle range increased when the ratio of each dye used in the one bath dyeing method was equal to the ratio of the fiber dosage in the mixed colored fiber system. This may be because each fiber is dyed separately before being mixed, reducing dye competition and expanding the color gamut of woolen clothing dyed with natural dyes. The K/S curve of fabrics dyed using the one bath dyeing method matches the fitting curve by the Kubelka-Munk single constant theoretical model (Fig. 3), demonstrating a linear relationship between the K/S value of wool fabric dyed with mixed natural dyes and the K/S value of dyed with the single red, yellow, and blue natural dyes. Additionally, the reflectance curve of the mixed colored fiber was fitted using the Stearns-Noechel model. Reflectance change of the mixed colored fibers in the 400-700 nm wavelength range was almost in line with the reflectance curve determined using the Stearns-Noechel model(as seen in Fig. 4).
Conclusion The CIELAB color gamut space showed non-uniform distribution of the color coordinate of wool fabric dyed using the one bath dyeing method. Natural red dyes have a greater affinity for fibers than yellow, and blue natural dyes. Across comparison to wool fabric colored using the one bath dyeing method, the color coordinate of mixed colored fiber was spread more evenly in the color gamut space. The hue angle value of mixed colored fiber ranged in 0°-50° and 316°-360°. Using the one bath dyeing method and mixed colored fiber treated with natural dyes respectively, the Kubelka-Munk model and the Stearns-Noechel model could be used to predict the color of wool fabrics. This study also suggests novel approaches for further enhancing production efficiency and lowering color matching costs.

Key words: natural dye, wool fiber, color matching, Kubelka-Munk single constant theoretical model, Stearns-Noechel model, color gamut space

CLC Number: 

  • TS192.5

Tab.1

Influence of pH value on K/S value of wool fabric dyed with natural dyes"

染料种类 pH值 K/S
天然红 2 17.82
3 12.65
4 3.89
天然黄 2 1.51
3 3.55
4 3.62
天然蓝 2 10.73
3 4.56
4 2.07

Tab.2

Color parameters of wool fabrics dyed by one bath dyeing method"

样品编号 染料用量/%(o.m.f) 颜色参数值
天然红 天然黄 天然蓝 L* a* b* C* h /(°)
F1 5 0 0 30.53 34.15 5.50 34.59 9.15
F2 4 1 0 31.34 34.41 6.79 35.08 11.15
F3 4 0 1 31.51 33.80 4.29 34.07 7.24
F4 3 2 0 32.85 34.01 7.20 34.77 11.96
F5 3 1 1 28.12 23.94 0.17 23.94 0.41
F6 3 0 2 27.13 19.86 -2.54 20.02 352.70
F7 2 3 0 35.23 32.95 8.41 34.01 14.32
F8 2 2 1 31.21 21.39 0.99 21.41 2.65
F9 2 1 2 28.78 17.67 -2.29 17.82 352.60
F10 2 0 3 28.12 14.94 -5.58 15.94 339.53
F11 1 4 0 45.24 28.14 13.26 31.10 25.23
F12 1 3 1 37.24 16.99 3.59 17.37 11.94
F13 1 2 2 36.10 12.42 -0.41 12.43 358.10
F14 1 1 3 34.20 10.26 -3.32 10.78 342.08
F15 1 0 4 32.59 9.11 -6.59 11.24 324.12
F16 0 5 0 79.10 3.98 54.41 54.56 85.82
F17 0 4 1 50.05 -9.65 10.75 14.45 131.91
F18 0 3 2 45.74 -9.02 3.26 9.59 160.14
F19 0 2 3 42.38 -7.92 -1.99 8.16 194.10
F20 0 1 4 41.18 -7.05 -5.50 8.94 217.98
F21 0 0 5 41.11 -6.34 -8.59 10.68 233.56

Fig.1

Color position of wool fabrics dyed by one bath dyeing method in CIELAB color space"

Tab.3

Color parameters of mixed colored wool fiber"

样品编号 质量分数% 颜色参数值
天然红 天然黄 天然蓝 L* a* b* C* h /(°)
S1 100 0 0 34.44 34.32 4.45 34.61 7.38
S2 80 20 0 41.20 31.97 6.55 32.63 11.59
S3 80 0 20 37.04 28.96 1.53 29.00 3.02
S4 60 40 0 46.15 28.67 10.11 30.40 19.43
S5 60 20 20 42.26 26.12 3.90 26.41 8.48
S6 60 0 20 41.79 23.51 -1.18 23.54 357.12
S7 40 60 0 51.04 24.76 12.60 27.78 26.98
S8 40 40 20 51.00 18.31 6.02 19.27 18.20
S9 40 20 40 45.43 16.02 1.86 16.13 6.63
S10 40 0 60 45.54 14.59 -3.00 14.90 348.37
S11 20 80 0 60.91 18.88 22.21 29.15 49.64
S12 20 60 20 58.79 10.60 11.74 15.82 47.92
S13 20 40 40 54.60 7.85 6.10 9.94 37.85
S14 20 20 60 50.34 8.00 -1.87 8.22 346.85
S15 20 0 80 52.06 5.28 -4.96 7.24 316.78
S16 0 100 0 81.81 -0.53 40.08 40.08 90.75
S17 0 80 20 70.73 -4.28 26.77 27.11 99.09
S18 0 60 40 63.16 -5.30 13.20 14.22 111.90
S19 0 40 60 61.53 -4.59 8.33 9.51 118.84
S20 0 20 60 57.30 -7.10 1.07 7.18 171.44
S21 0 0 100 54.93 -5.25 -4.74 7.08 222.10

Fig.2

Color position of mixed colored wool fiber in CIELAB color space"

Fig.3

Fitting curves of Kubelka-Munk single constant theoretical model and measured curves of K/S value"

Tab.4

Actual dye proportion and computing dye proportion from Kubelka-Munk single constant theoretical model of dyed samples"

样品
编号
实际配比/%(o.m.f) 预测拟合配比/%(o.m.f)
天然红 天然黄 天然蓝 天然红 天然黄 天然蓝
F2 4 1 0 2.72 0.01 0
F3 4 0 1 2.54 0 0.02
F4 3 2 0 2.36 0.33 0
F5 3 1 1 2.42 0.16 0.61
F6 3 0 2 2.19 0 1.02
F7 2 3 0 1.89 0.92 0
F8 2 2 1 1.75 0.31 0.61
F9 2 1 2 1.78 0 1.07
F10 2 0 3 1.54 0 1.48
F11 1 4 0 0.80 1.66 0.01
F12 1 3 1 0.95 1.12 0.53
F13 1 2 2 0.83 0.62 0.87
F14 1 1 3 0.82 0.19 1.20
F15 1 0 4 0.79 0 1.54
F17 0 4 1 0.01 1.72 0.80
F18 0 3 2 0.01 1.14 1.17
F19 0 2 3 0.02 0.63 1.53
F20 0 1 4 0.02 0.18 1.70

Tab.5

Optimal M values of mixed colored wool fiber based on Stearns-Noechel model"

样品编号 最优M 样品编号 最优M
S2 0.048 3 S11 0.190 9
S3 0.126 4 S12 0.108 2
S4 0.090 5 S13 0.116 8
S5 0.123 7 S14 0.143 2
S6 0.036 0 S15 0.066 8
S7 0.169 1 S17 0.115 4
S8 0.074 4 S18 0.083 9
S9 0.164 3 S19 0.177 2
S10 0.046 1 S20 0.080 0

Fig.4

Fitting curves of Stearns-Noechel model and measured curves of reflectivity"

[1] 钱洁. 天然染料用于羊毛染色的研究进展[J]. 纺织报告, 2016(10): 4.
QIAN Jie. Research progress of wool dyeing with natural dyes[J]. Textile Reports, 2016(10): 4.
[2] 王祥荣. 天然染料的应用现状及研究进展[J]. 纺织导报, 2021(9): 24-29.
WANG Xiangrong. Application and research progress of natural dyes[J]. China Textile Leader, 2021(9):24-29.
[3] 任燕飞, 巩继贤, 张健飞, 等. 纺织品染色用微生物色素的研究进展[J]. 纺织学报, 2017, 38(1):163-168.
REN Yanfei, GONG Jixian, ZHANG Jianfei, et al. Research progress of microbial pigments used in textile dyeing[J]. Journal of Textile Research, 2017, 38(1):163-168.
[4] 王静静. 石榴皮色素的提取及其在羊毛纤维染色中的应用[J]. 染整技术, 2011, 33(2): 40-43.
WANG Jingjing. Extraction of pigment from pomegranate peel and its application in dyeing of wool fiber[J]. Textile Dyeing and Finishing Journal, 2011, 33(2): 40-43.
[5] 林明霞, 吴坚, 邓丽丽. 天然植物染料黄连染羊毛织物[J]. 针织工业, 2005(1): 47-49.
LIN Mingxia, WU Jian, DENG Lili. Wool fabric dyed with natural plant dye Coptis chinensis[J]. Knitting Industries, 2005(1): 47-49.
[6] 贾艳梅. 栎树叶色素对羊毛织物的染色及拼色[J]. 毛纺科技, 2013, 41(4): 47-50.
JIA Yanmei. Dyeing and combination dyeing of wool fabric with oak leaves pigment[J]. Wool Textile Journal, 2013, 41(4): 47-50.
[7] 蔡苏英. 麻栎壳天然色素在羊毛织物上的染色性能[J]. 纺织学报, 2011, 32(8):72-75.
CAI Suying. Dyeing performance of acutissima shell natural coloring matter for wool fabrics[J]. Journal of Textile Research, 2011, 32(8):72-75.
[8] 任燕飞, 巩继贤, 张健飞, 等. 茶色素染液pH值对羊毛织物染色效果及抗菌性的影响[J]. 纺织学报, 2016, 37(11):86-91.
REN Yanfei, GONG Jixian, ZHANG Jianfei, et al. Influence of dye solution pH value on dyeing effects and antibacterial properties of wool fabrics dyed with tea natural dye[J]. Journal of Textile Research, 2016, 37(11): 86-91.
[9] 钟绵国, 赵涛. 灵菌红素对羊毛纤维的染色动力学与热力学研究[J]. 毛纺科技, 2010, 38(7): 15-18.
ZHONG Mianguo, ZHAO Tao. Kinetics and thermodynamics studies of prodigiosin dyeing on wool fabrics[J]. Wool Textile Journal, 2010, 38(7): 15-18.
[10] 丁思佳, 王建明, 宋江彬. 天然染料靛蓝改性及对羊毛染色工艺研究[J]. 毛纺科技, 2016, 44(1): 33-36.
DING Sijia, WANG Jianming, SONG Jiangbin. Investigation on modification of natural indigo dye and the dyeing process of wool[J]. Wool Textile Journal, 2016, 44(1): 33-36.
[11] 罗勇. 植物染料复配染色技术研究及其在羊毛制品上的应用[D]. 上海: 东华大学, 2009:15-31.
LUO Yong. The research on complex dyeing of natural dyes and its application on wool fabrics[D]. Shanghai: Donghua University, 2009:15-31.
[12] 于伯龄. 10种天然染料染羊毛与丝绸的试验[J]. 染整技术, 2001, 23(3): 7-12.
YU Boling. Dyeing wool and silk with 10 kinds of natural dyes[J]. Textile Dyeing and Finishing Journal, 2001, 23(3): 7-12.
[13] 冯之兴. 天然染料对羊毛织物染色工艺的研究[D]. 苏州: 苏州大学, 2017:18-26.
FENG Zhixing. Studying of dyeing process on wool fabric with nature dyes[D]. Suzhou: Soochow University, 2017:18-26.
[14] 张毅, 王妮, 张瑞云, 等. 色纺纱成色机理的探讨[J]. 棉纺织技术, 2019, 47(4): 18-24.
ZHANG Yi, WANG Ni, ZHANG Ruiyun, et al. Discussion on the coloring mechanism of colored spun yarn[J]. Cotton Textile Technology, 2019, 47(4): 18-24.
[15] 沈加加, 张志强, 陈燕兵, 等. 基于Stearns-Noechel模型的混色毛条颜色预测[J]. 纺织学报, 2008, 29(11): 61-66.
SHEN Jiajia, ZHANG Zhiqiang, CHEN Yanbing, et al. Match prediction for blended-color wool tops based on Stearns-Noechel model[J]. Journal of Textile Research, 2008, 29(11): 61-66.
[16] 王卓, 杨瑞华, 潘博, 等. 基于Kubelka-Munk双常数理论的色纺纱配色模型[J]. 棉纺织技术, 2021, 49(2): 24-30.
WANG Zhuo, YANG Ruihua, PAN Bo, et al. Color matching model of colored spun yarn based on Kubelka-Munk double constant theory[J]. Cotton Textile Technology, 2021, 49(2): 24-30.
[17] 赵玉. 基于原色纤维混配色织物的呈色规律研究[D]. 上海: 东华大学, 2015: 9-16.
ZHAO Yu. Study on fabric coloring law based on primary-color fibers blending[D]. Shanghai: Donghua University, 2015: 9-16.
[18] DUNTLEY S Q. The prediction and control of colored fiber blends by optical means[J]. American Dyestuff Reporter, 1941, 30: 698-700.
[19] 张戈. 棉纤维色纺混色模型优化及配色方法研究[D]. 无锡: 江南大学, 2021: 30-38.
ZHANG Ge. Research on optimization of color prediction model and color matching method for color spun cotton fiber[D]. Wuxi: Jiangnan University, 2021: 30-38.
[1] CHENG Lu, MA Chongqi, ZHOU Huimin, WANG Ying, XIA Xin. Optimization of full spectrum color matching algorithm for color spun yarn based on visual characteristics [J]. Journal of Textile Research, 2022, 43(10): 38-44.
[2] XU Minghui, XU Pinghua, WEI Qiuju, DING Xuemei, MAO Hailin. Color parsing of female brand clothing based on nexus network modeling [J]. Journal of Textile Research, 2021, 42(11): 137-142.
[3] ZHANG Aidan, GUO Zhenni, WANG Yangzi. Comparative research on color simulation optimization of jacquard fabric based on modularized compound full-color structure [J]. Journal of Textile Research, 2021, 42(10): 67-74.
[4] XU Xuemei. Improved genetic algorithm for fabric formulation prediction based on simulated annealing algorithm [J]. Journal of Textile Research, 2021, 42(07): 123-128.
[5] WANG Liang, MA Xiaoguang, LI Junjun, YANG Zhou. Development and application of color change chromatography with thermochromic microcapsules [J]. Journal of Textile Research, 2020, 41(09): 88-94.
[6] CHENG Lu, CHEN Tingting, CAO Jiqiang, WANG Ying, XIA Xin. Computerized color modification algorithm for color spinning based on spectral reflectance [J]. Journal of Textile Research, 2020, 41(09): 39-44.
[7] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile/cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[8] CHEN Jingjing, WANG Biqi, WANG Xueqin. Innovation design and performance test of needle composite wool fabric [J]. Journal of Textile Research, 2019, 40(03): 49-53.
[9] . Research progress of computer color matching for colored spun yarn [J]. Journal of Textile Research, 2018, 39(11): 176-184.
[10] . Color prediction of double channel digital ring spinning melange yarn based on Stearns - Noechel model [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 32-37.
[11] . Parameter optimizing of Stearns-Noechel model in color matching of cotton colored spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 31-37.
[12] . Stearns-Noechel color matching model of digital rotor spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 27-32.
[13] . Color fiber mixing formula algorithm based on Friele model [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 33-37.
[14] . Relationship between fractal structure and warmth retention properties of wool fiber assembly [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 11-15.
[15] . Application of colored fiber mixed models in gray spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[3] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[4] GU Da-qiang;NIE Lin. Reinforcement fabric knitting machine for plastic pressure hose[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 86 -88 .
[5] ZHONG Zhi-li;WANG Xun-gai. Application prospect of nanofibers[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 107 -110 .
[6] LUO Jun;FEI Wan-chun. Distribution of the filament number of each cocoon layer in raw silk threads[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 1 -4 .
[7] MA Xiao-guang;CUI Gui-xin;DONG Shao-wei . Study of gel form intelligent cotton knitgoods with polymer grafting initiated by microwave plasma[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 13 -16 .
[8] BAO Xiao-min;WANG Ya-ming. Image segmentation based on the minimum risk Bayes decision[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 33 -36 .
[9] WANG Xin-feng;LUO Xin;WANG Xiao-dong;WU Hui-li. Heat-melt adhesion and mechanical properties of modified thermoplastic polyurethane[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 58 -60 .
[10] CHU Yong-mei;WANG Qi;WANG Guo-he. Flexibility test and analysis of pure bamboo pulp yarns and blended yarns[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 68 -70 .