Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (10): 113-119.doi: 10.13475/j.fzxb.20220808001
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
JIA Liping, LI Ming, LI Weilong, RAN Jianhua, BI Shuguang(), LI Shiwei
CLC Number:
[1] |
SEYEDIN S, ZHANG P, NAEBE M, et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications[J]. Materials Horizons, 2019, 6(2): 219-49.
doi: 10.1039/C8MH01062E |
[2] | YAO S, MYERS A, MALHOTRA A, et al. A wearable hydration sensor with conformal nanowire elec-trodes[J]. Advanced Healthcare Materials, 2017, 6(6): 27695. |
[3] | LA T G, QIU S, SCOTT D K, et al. Two-layered and stretchable e-textile patches for wearable healthcare electronics[J]. Advanced Healthcare Materials, 2018. DOI: 10.1002/adhm.201801033. |
[4] | WANG L, FU X, HE J, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1-25. |
[5] | CHEN L Y, TEE B C, CHORTOS A L, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care[J]. Nature Communications, 2014. DOI: 10.1038/ncomms6028. |
[6] | DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monito-ring[J]. Nature Communications, 2014. DOI: 10.1038/ncomms5496. |
[7] |
WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9): 1336-1342.
doi: 10.1002/adma.v26.9 |
[8] |
ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
doi: 10.1039/C4MH00147H |
[9] |
ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Appl Mater Interfaces, 2019, 11(26): 23649-23658.
doi: 10.1021/acsami.9b08611 |
[10] | CAI G, HAO B, LUO L, et al. Highly stretchable sheath-core yarns for multifunctional wearable elec-tronics[J]. ACS Appl Mater Interfaces, 2020, 12(26): 29717-29727. |
[11] |
CAI G, YANG M, PAN J, et al. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32726-32735.
doi: 10.1021/acsami.8b11885 |
[12] |
YAO H B, GE J, WANG C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46): 6692-6698.
doi: 10.1002/adma.v25.46 |
[13] | GURARSLAN A, ÖZDEMIR B, BAYAT İ H, et al. Silver nanowire coated knitted wool fabrics for wearable electronic applications[J]. Journal of Engineered Fibers and Fabrics, 2019. DOI: 10.1177/1558925019856222. |
[14] |
WEI Y, CHEN S, DONG X, et al. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene[J]. Carbon, 2017, 113: 395-403.
doi: 10.1016/j.carbon.2016.11.027 |
[15] |
CHEN S, WEI Y, YUAN X, et al. A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich struc-ture[J]. Journal of Materials Chemistry C, 2016, 4(19): 4304-4311.
doi: 10.1039/C6TC00300A |
[16] | HA H, AMICUCCI C, MATTEINI P, et al. Mini review of synthesis strategies of silver nanowires and their applications[J]. Colloid and Interface Science Communications, 2022. DOI: 10.1016/j.colcom.2022.100663. |
[17] | FU D, YANG R, WANG Y, et al. Silver nanowire synthesis and applications in composites: progress and prospects[J]. Advanced Materials Technologies, 2022. DOI: 10.1002/admt.202200027. |
[1] | LI Long, ZHANG Xian, WU Lei. Research progress in preparation and application of conductive yarn materials [J]. Journal of Textile Research, 2023, 44(07): 214-221. |
[2] | WANG Kai, WANG Jin, NIU Li, CHEN Chaoyu, MA Pibo. Preparation and conductive stability of knitted circuit using cotton/stainless steel wire core-spun yarn [J]. Journal of Textile Research, 2023, 44(07): 64-71. |
[3] | XU Ruidong, LIU Hong, WANG Hang, ZHU Shifeng, QU Lijun, TIAN Mingwei. Construction and strain sensing properties of an ionic hydrogel composite fabric [J]. Journal of Textile Research, 2023, 44(06): 137-143. |
[4] | ZHOU Xinru, FAN Mengjing, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, ZHAO Xiaoman. Effect of spinneret rate on structure and properties of nanofiber core-spun yarns prepared by continuous water bath electrospinning [J]. Journal of Textile Research, 2023, 44(06): 50-56. |
[5] | WU Junxiong, WEI Xia, LUO Jingxian, YAN Jiaoru, WU Lei. Preparation and UV stability of flame-retardant acrylic/aramid core-spun yarns [J]. Journal of Textile Research, 2023, 44(03): 60-66. |
[6] | ZHOU Xinru, HU Chengye, FAN Mengjing, HONG Jianhan, HAN Xiao. Electric field simulation of two-needle continuous water bath electrospinning and structure of nanofiber core-spun yarn [J]. Journal of Textile Research, 2023, 44(02): 27-33. |
[7] | LIU Huanhuan, WANG Zhaohui, YE Qinwen, CHEN Ziwei, ZHENG Jingjin. Progress and trends in application of wearable technology for emotion recognition [J]. Journal of Textile Research, 2022, 43(08): 197-205. |
[8] | ZOU Zhuanyong, MIAO Lulu, DONG Zhengmei, ZHENG Guoquan, FU Na. Effect of air-jet vortex spinning process on properties of viscose/polyester core-spun yarns [J]. Journal of Textile Research, 2022, 43(08): 27-33. |
[9] | YAO Mingyuan, LIU Ningjuan, WANG Jianing, XU Fujun, LIU Wei. Electrothermal properties of functionalization carbon nanotube composite films and films twisted yarns [J]. Journal of Textile Research, 2022, 43(05): 86-91. |
[10] | YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131. |
[11] | WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70. |
[12] | YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68. |
[13] | WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25. |
[14] | WANG Hongcheng, LANG Runnan, WANG Fangfang, XU Fengyu, SHEN Jingjin. Prediction model and analysis of foot-ground reaction force based on pressure insole [J]. Journal of Textile Research, 2019, 40(11): 175-181. |
[15] | HE Jian, PEI Zeguang, ZHOU Jian, XIONG Xiangzhang, LÜ Haichen. Online monitoring of formation process of vortex core-spun yarn containing metal wire [J]. Journal of Textile Research, 2019, 40(05): 136-143. |
|