Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (02): 55-62.doi: 10.13475/j.fzxb.20220808108

• Fiber Materials • Previous Articles     Next Articles

Preparation of high melt index polylactic acid masterbatch and spinnability of its meltblown materials

ZHANG Yujing1, CHEN Lianjie2, ZHANG Sidong2, ZHANG Qiang3, HUANG Ruijie4, YE Xiangyu5, WANG Lunhe6, XUAN Xiaoya7, YU Bin1, ZHU Feichao1,8,9()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Longterm Medical Technology Co., Ltd., Huzhou, Zhejiang 313000, China
    3. Jiangsu Nature Arts Biomaterials Co., Ltd., Wuxi, Jiangsu 214000, China
    4. China General Nuclear (CGN) Juner New Materials Co., Ltd., Wenzhou, Zhejiang 325000, China
    5. Zhejiang Light Industrial Products Inspection and Research Institute, Hangzhou, Zhejiang 310018, China
    6. Zhejiang Hisun Biomaterials Co., Ltd., Taizhou, Zhejiang 318000, China
    7. Goldensea Environment Technology Co., Ltd., Shaoxing, Zhejiang 311800, China
    8. Shaoxing Eco Textile Technology Co., Ltd., Shaoxing, Zhejiang 311800, China
    9. Huzhou Research Institute of Zhejiang Sci-Tech University, Huzhou, Zhejiang 313000, China
  • Received:2022-08-17 Revised:2022-11-17 Online:2023-02-15 Published:2023-03-07

Abstract:

Objective Meltblown polymer raw materials often require a relatively high melt index (MI), due to the fact that the polymer melt is extruded from the spinneret hole and then immediately subjected to high temperature and high speed airflow for rapid fiber formation. The melt flow must match its fiber formation speed, too high and too low MI will lead to the formation of melt droplets, seriously affecting the fiber formation process. In order to investigate the effect of different high melt index of polylactic acid (PLA) masterbatches on their meltblown spinnability, the preparation of PLA meltblown nonwoven materials for overall performance improvement was investigated.
Method PLA masterbatches with melt indexes of 200, 400, 600, 1 000 and 1 400 g/(10 min) were designed and prepared by catalytic degradation method using spinning grade PLA as raw material, and their capillary rheological properties, molecular weight and its distribution, thermal-crystallization properties and thermal stability were investigated. Further, PLA meltblown materials with different melt indexes were prepared and their morphological structure, fiber diameter and mechanical properties were investigated.
Results The melt of PLA meltblown masterbatch is typically "tangential thinning", which is characterized by a decrease in shear viscosity with increasing shear rate. The lower the melt index, the more significant the change in shear viscosity with shear rate, as shown in Fig. 2. No significant differences were found in glass transition temperature and melting point for PLA masterbatches with different melt indexes, and a significant cold crystallization peak appeared in the secondary temperature rise curves for MI=600,1 000 and 1 400 g/(10 min), as is shown in Fig. 4 and Tab. 2. It was also found that the crystallinity of the melt decreases as the MI increases. The higher the MI, the lower the molecular weight and the wider the molecular weight distribution (as shown in Fig. 3 and Tab. 1), which manifests itself in lower mechanical properties. The meltblown fiber with MI=400 and 600 g/(10 min) demonstrates the best uniformity and satisfactory mechanical properties, and the most fiber diameter around between 1 and 4 μm, as shown in Fig. 6-7.
Conclusion In recent years, most of the domestic research on PLA has focused on the modification and functional finishing of this raw material, but the research on the meltblown spinnability of PLA masterbatches with high melt index and their influence on the performance of meltblown materials have not yet seen any systematic research. The research on meltblown spinnability of high melt index PLA masterbatches and its effect on the performance of meltblown materials have not been reported systematically. This study provides a theoretical basis and application guidance for the selection of high-quality PLA meltblown raw materials and the evaluation of their performance.

Key words: polylactic acid, meltblown technology, nonwoven material, melt flow rate, melt index, rheology property

CLC Number: 

  • TS176

Fig.1

Preparation process of high melt index of PLA masterbatch and its meltblown material"

Fig.2

Melt flow properties of PLA masterbatch with different melt index. (a) Melt index curves; (b) Shear viscosity curves"

Fig.3

Molecular weight and molecular weight distribution of PLA masterbatches with different melt index"

Tab.1

Molecular weight distribution parameters of PLA masterbatches with different melt index"

熔融指数/
(g·(10 min)-1)
Mn/(g·mol-1) Mw/(g·mol-1) PDI
200 40 237 75 566 1.878
400 37 488 71 229 1.900
600 27 872 56 891 2.041
1 000 20 433 37 175 2.097
1 400 13 316 29 857 2.242

Fig.4

DSC curves of PLA masterbatches with different melt index. (a) Secondary temperature rise curve; (b)First temperature cooling curves"

Tab.2

DSC parameters of PLA masterbatches with different melt index"

熔融指数/(g·(10 min)-1) 玻璃化转变温度/℃ 冷结晶温度/℃ 冷结晶焓/ (J·g-1) 熔融温度/℃ 熔融焓/ (J·g-1) 结晶度/%
200 58.9 11.1 171.2 14.5 3.7
400 59.6 14.9 170.9 18.2 3.5
600 61.2 113.4 51.5 173.5 53.5 2.1
1 000 60.8 112.3 52.5 172.0 53.4 1.0
1 400 60.7 108.6 52.8 172.5 53.5 0.8

Tab.3

Thermogravimetric parameters of PLA masterbatches with different melt index"

熔融指数/(g·(10 min)-1) T5%/℃ T50%/℃ T95%/℃
200 339.5 371.9 389.5
400 339.7 372.3 389.9
600 335.3 371.6 389.7
1 000 336.9 374.4 392.9
1 400 331.1 370.8 388.9

Fig.5

TG(a) and DTG (b) curves of PLA masterbatches with different melt index"

Fig.6

Fiber diameter and its distribution of PLA meltblown materials with different melt index"

Fig.7

SEM images of PLA meltblown materials with different melt index"

Fig.8

Change curves of longitudinal (a) and transverse (b) strength-elongation of PLA meltblown materials"

[1] HIREMATH N, BHAT G. Melt blown polymeric nanofibers for medical applications: an overview[J]. Nanoscience and Technology, 2015, 2(1): 1-9.
[2] DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: a review[J]. Physics of Fluids, 2019, 31(9):091301.
doi: 10.1063/1.5116336
[3] 孙焕惟, 张恒, 甄琪, 等. 聚乳酸熔喷法非织造材料的应用及改性研究进展[J]. 高分子材料科学与工程, 2022, 38(5):146-153.
SUN Huanwei, ZHANG Heng, ZHEN Qi, et al. Progress on the modification and application of polylactic acid melt blown nonwovens[J]. Polymer Materials Science & Engineering, 2022, 38(5):146-153.
[4] 王镕琛, 张恒, 孙焕惟, 等. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5):158-166.
doi: 10.19491/j.issn.1001-9278.2022.05.025
WANG Rongchen, ZHANG Heng, SUN Huanwei, et al. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications[J]. China Plastics, 2022, 36(5):158-166.
doi: 10.19491/j.issn.1001-9278.2022.05.025
[5] 常敬颖, 李素英, 张旭, 等. 可降解聚乳酸熔喷超细纤维空气滤材的制备[J]. 纺织导报, 2016(6):96-97.
CHANG Jingying, LI Suying, ZHANG Xu, et al. The preparation of degradable PLA superfine fiber meltblown air filter material[J]. China Textile Leader, 2016(6):96-97.
[6] 谷英姝, 汪滨, 张秀芹, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 214-217.
GU Yingshu, WANG Bin, ZHANG Xiuqin, et al. Research progress on PLA melt-blown nonwoven applied in air filtration[J]. New Chemical Materials, 2021, 49(1): 214-217.
[7] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1):49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1):49-57.
[8] BRESEE R. Fiber formation during melt blowing[J]. International Nonwovens, 2003(2): 21-28.
[9] TAN D H, ZHOU C, ELLISON C J, et al. Meltblown fibers: influence of viscosity and elasticity on diameter distribution[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(15/16): 892-900.
doi: 10.1016/j.jnnfm.2010.04.012
[10] 胡声威, 钱鑫, 王素玉, 等. 熔喷聚丙烯原料性能及加工工艺研究[J]. 塑料工业, 2021, 49(7):148-152.
HU Shengwei, QIAN Xin, WANG Suyu, et al. Study on properties and processing technology of melt-blown polypropylene raw material[J]. China Plastics Industry, 2021, 49(7):148-152.
[11] YESIL Y, BHAT G S. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science & Technology, 2016, 28(6):780-793.
[12] 林佩洁, 王琳, 许庆燕, 等. 滤材用聚对苯二甲酸丁二酯熔喷非织造布的研制[J]. 合成纤维, 2011, 40(5):5-11.
LIN Peijie, WANG Lin, XU Qingyan, et al. Study on the preparation of polybutylene terephthalate melt-blown nonwovens for filters[J]. Synthetic Fiber in China, 2011, 40(5):5-11.
[13] 孙焕惟, 张恒, 崔景强, 等. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(6):86-93.
SUN Huanwei, ZHANG Heng, CUI Jingqiang, et al. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process[J]. Journal of Textile Research, 2022, 43(6):86-93.
doi: 10.1177/004051757304300205
[14] ZHU F C, YU B, SU J J, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwovens[J]. Autex Research Journal, 2020, 20(1):24-31.
doi: 10.2478/aut-2019-0002
[15] 张水法, 张莉慧. 一种环保熔喷滤芯制作装置: 202010275399.X[P]. 2020-04-07.
ZAHNG Shuifa, ZHANG Lihui. An environment-friendly melt blown filter element manufacturing device: 202010275399.X[P]. 2020-04-07.
[16] DIETER H M, ANDREAS K. Meltblown fabrics from biodegradable polymers[J]. Inrernational Nonwovens Journal, 2001.DOI:10.1177/15589250010s-1000106.
doi: 10.1177/15589250010s-1000106
[17] 渠叶红, 柯勤飞. 熔喷聚乳酸非织造材料的研究进展[J]. 产业用纺织品, 2003, 21(12): 1-5.
QU Yehong, KE Qinfei. The investigation progress on melt-blown polylactic acid nonwovens[J]. Technical Textiles, 2003, 21(12): 1-5.
[18] 渠叶红, 柯勤飞, 靳向煜, 等. 熔喷聚乳酸非织造材料工艺与过滤性能研究[J]. 产业用纺织品, 2005, 23(5): 19-22.
QU Yehong, KE Qinfei, JIN Xiangyu, et al. Study on the meltblown PLA nonwoven process and filtration property[J]. Technical Textiles, 2005, 23(5): 19-22.
[19] 顾伟军, 周文强, 刘桂刚, 等. 一种生物可降解熔喷材料及其制备方法和应用:202111397098.5[P]. 2021-11-21.
GU Weijun, ZHOU Wenqiang, LIU Guigang, et al. Biodegradable melt-blown material as well as preparation method and application thereof:202111397098.5[P]. 2021-11-21.
[20] 彭威, 江太君. 热降解法制备喷丝级高熔融指数聚丙烯及其流变性能研究[J]. 化工技术与开发, 2020, 49(11):15-17.
PENG Wei, JIANG Taijun. Preparation and properties of melt-blown polypropylene manufactured by thermal[J]. Technology & Development of Chemical Industry, 2020, 49(11):15-17.
[21] 潇姝. Nature Works公司计划于2013年提供新的高性能IngeoTM树脂和丙交酯[J]. 江苏纺织, 2011, 19(4):39.
XIAO Shu. Nature Works plans to provide new high-performance IngeoTM resin and lactide in 2013[J]. Jiangsu Textile, 2011, 19(4):39.
[22] 朱斐超. 熔喷非织造用PHBV/PLA共混材料相容性与可纺性研究[D]. 杭州: 浙江理工大学, 2014:33.
ZHU Feichao. Study on the miscibility and spinnability of PHBV/PLA blends for melt-blown[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 33.
[23] 孙焕惟. 聚乳酸非织造材料的后牵伸辅助熔喷成型工艺及其增韧机理研究[D]. 郑州: 中原工学院, 2022:29.
SUN Huanwei. Research on post-drafting assisted melt blown molding process and toughening mechanism of polylactic acid nonwovens[D]. Zhengzhou: Zhongyuan University of Technology, 2022:29.
[24] 朱斐超. 尼龙11/埃洛石纳米管复合聚乳酸材料及其增强增韧熔喷非织造材料的研究[D]. 杭州: 浙江理工大学, 2019:29.
ZHU Feichao. Study on polyamide 11/halloysite nanotubes hybrid poly(lactic acid) composites and reinforced and toughened melt-blown nonwovens[D]. Hangzhou: Zhejiang Sci-Tech University, 2019:29.
[25] 朱传龙, 蔡芳昌, 周勤, 等. Taguchi法研究影响聚乳酸熔融指数的因素[J]. 胶体与聚合物, 2010, 28(2):75-77.
ZHU Chuanlong, CAI Fangchang, ZHOU Qin, et al. Parametric study of improving PLA melt index using Taguchi method[J]. Chinese Journal of Colloid & Polymer, 2010, 28(2):75-77.
[1] CHEN Huanhuan, CHEN Kaikai, YANG Murong, XUE Haolong, GAO Weihong, XIAO Changfa. Preparation and properties of polylactic acid/thymol antibacterial fibers [J]. Journal of Textile Research, 2023, 44(02): 34-43.
[2] WANG Shudong. Structure and mechanical properties of three-dimensional porous biodegradable polymer artificial esophageal scaffold [J]. Journal of Textile Research, 2022, 43(12): 16-21.
[3] LIU Ya, CHENG Kewei, ZHAO Yixia, YU Wen, ZHANG Shuping, QIAN Zimao. Preparation and properties of thermoplastic polyurethane meltblowns [J]. Journal of Textile Research, 2022, 43(11): 88-93.
[4] CHENG Yanting, MENG Jiaguang, XUE Tao, ZHI Chao. Preparation of 3D printed weft plain knitted fabric [J]. Journal of Textile Research, 2022, 43(09): 115-119.
[5] LIU Yanlin, GU Weiwen, WEI Jianfei, WANG Wenqing, WANG Rui. Research progress and status quo of heat-resistant polylactic acid materials [J]. Journal of Textile Research, 2022, 43(06): 180-186.
[6] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
[7] CHEN Peng, LIAO Shihao, SHEN Lanping, WANG Xuan, WANG Peng. Dyeing properties of polylactic acid/polyketone fibers with disperse dye [J]. Journal of Textile Research, 2022, 43(05): 12-17.
[8] ZHAO Jiaming, SUN Hui, YU Bin, YANG Xiaodong. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties [J]. Journal of Textile Research, 2022, 43(02): 89-97.
[9] DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission [J]. Journal of Textile Research, 2022, 43(01): 36-42.
[10] ZHU Feichao, ZHANG Yujing, ZHANG Qiang, YE Xiangyu, ZHANG Heng, WANG Lunhe, HUANG Ruijie, LIU Guojin, YU Bin. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(01): 49-57.
[11] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[12] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[13] LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202.
[14] WEN Yufeng, MA Xiaopu, SHENG Fangyuan, ZHU Zhiguo. Preparation of microencapsulated intumescent flame retardant and its use in polylactic acid [J]. Journal of Textile Research, 2021, 42(06): 71-77.
[15] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .