Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (02): 69-75.doi: 10.13475/j.fzxb.20220809007
• Fiber Materials • Previous Articles Next Articles
FENG Shuaibo1, QIANG Rong1,2(), SHAO Yulong3, YANG Xiao1, MA Qian1, CHEN Bowen1, CHEN Yi1, GAO Mingyang1, CHEN Caihong1
CLC Number:
[1] |
WU Z, CHENG H W, JIN C, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption[J]. Advanced Materials, 2022.DOI: 10.1002/adma.202107538.
doi: 10.1002/adma.202107538 |
[2] |
WANG L, HUANG M, QIAN X, et al. Confined magnetic-dielectric balance boosted electromagnetic wave absorption[J]. Small, 2021.DOI: 10.1002/smll.202100970.
doi: 10.1002/smll.202100970 |
[3] |
CHENG J, ZHANG H, NING M, et al. Emerging materials and designs for low-and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy?[J]. Advanced Functional Materials, 2022.DOI:10.1002/adfm.202200123.
doi: 10.1002/adfm.202200123 |
[4] |
LIU W, SHAO Q, JI G, et al. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber[J]. Chemical Engineering Journal, 2017, 313:734-744.
doi: 10.1016/j.cej.2016.12.117 |
[5] |
LI Z J, HOU Z L, SONG W L, et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption[J]. Nanoscale, 2016, 8(19): 10415-10424.
doi: 10.1039/C6NR00223D |
[6] |
QIANG R, DU Y, ZHAO H, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A, 2015, 3(25): 13426-13434.
doi: 10.1039/C5TA01457C |
[7] |
QIANG R, DU Y, CHEN D, et al. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67)[J]. Journal of Alloys and Compounds, 2016, 681:384-393.
doi: 10.1016/j.jallcom.2016.04.225 |
[8] |
LIU D, QIANG R, DU Y, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2018, 514:10-20.
doi: S0021-9797(17)31403-0 pmid: 29227802 |
[9] |
MA W, HE P, XU J, et al. Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk-shell nanoboxes with enhanced microwave absorption[J]. Journal of Materials Chemistry A, 2022, 10(21): 11405-11413.
doi: 10.1039/D2TA01798A |
[10] | WU Z, TIAN K, HUANG T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11108-11115. |
[11] |
ZHAO H, CHENG Y, LV H, et al. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption[J]. Carbon, 2019, 142:245-253.
doi: 10.1016/j.carbon.2018.10.027 |
[12] |
QIANG R, FENG S, CHEN Y, et al. Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 606:406-423.
doi: 10.1016/j.jcis.2021.07.144 |
[13] |
LIU P, GAO S, ZHANG G, et al. Hollow engineering to Co@N-Doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption[J]. Advanced Functional Materials, 2021.DOI: 10.1002/adfm.202102812.
doi: 10.1002/adfm.202102812 |
[14] |
DONG Y, ZHU X, PAN F, et al. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nano-sheets @3D porous carbon hybrids for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.131272.
doi: 10.1016/j.cej.2021.131272 |
[15] |
DONG Y, ZHU X, PAN F, et al. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption[J]. Carbon, 2022, 190:68-79.
doi: 10.1016/j.carbon.2022.01.008 |
[16] |
ZHANG X, DONG Y, PAN F, et al. Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning high-performance microwave absorbers[J]. Carbon, 2021, 177:332-343.
doi: 10.1016/j.carbon.2021.02.092 |
[17] |
FANG X, LI W, CHEN X, et al. Controlling the microstructure of biomass-derived porous carbon to assemble structural absorber for broadening band-width[J]. Carbon, 2022, 198:70-79.
doi: 10.1016/j.carbon.2022.06.074 |
[1] | LIU Hao, MA Wanbin, LUAN Yiming, ZHOU Lan, SHAO Jianzhong, LIU Guojin. Preparation and properties of structural colored carbon fiber/polyester blended yarns based on photonic crystals [J]. Journal of Textile Research, 2023, 44(02): 159-167. |
[2] | CAI Jie, WANG Liang, FU Hongjun, ZHONG Zhili. Electromagnetic interference shielding properties of composites reinforced with glass fiber/carbon fiber fabrics [J]. Journal of Textile Research, 2023, 44(02): 111-117. |
[3] | FANG Zhouqian, MIAO Peiyuan, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Nondestructive testing on damage of carbon fiber composites using ultrasonic C-scanning [J]. Journal of Textile Research, 2022, 43(10): 71-76. |
[4] | XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan. Review on toughening modification of carbon fiber/epoxy resin composites [J]. Journal of Textile Research, 2022, 43(09): 203-210. |
[5] | WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal\|organic framework/activated carbon fiber composites [J]. Journal of Textile Research, 2022, 43(08): 126-131. |
[6] | WU Xia, YAO Juming, WANG Yan, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, ZHU Guocheng. Simulation and analysis of carbon fiber composite unmanned aerial vehicle blade [J]. Journal of Textile Research, 2022, 43(08): 80-87. |
[7] | ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96. |
[8] | NIU Xuejuan, XU Yanhui. Study on spreading behavior of carbon fiber bundles under different fractal flow path conditions [J]. Journal of Textile Research, 2022, 43(06): 165-170. |
[9] | WU Yang, LIU Fangtian, CAO Mengjie, CUI Jinhai, DENG Hongbing. Progress in biomass fiber medical dressings [J]. Journal of Textile Research, 2022, 43(03): 8-16. |
[10] | GU Yuanhui, ZHOU Hongtao, ZHANG Diantang, LIU Jingyan, WANG Shudong. Torsional mechanical properties and failure mechanism of braided carbon fiber reinforced composite tubes [J]. Journal of Textile Research, 2022, 43(03): 95-102. |
[11] | LIN Meixia, WANG Jiawen, XIAO Shuang, WANG Xiaoyun, LIU Hao, HE Yin. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor [J]. Journal of Textile Research, 2022, 43(02): 61-68. |
[12] | QIANG Rong, FENG Shuaibo, MA Qian, CHEN Bowen, CHEN Yi. Preparation and microwave absorption performance of cobalt/carbon fiber composites [J]. Journal of Textile Research, 2022, 43(02): 30-36. |
[13] | LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8. |
[14] | QIANG Rong, FENG Shuaibo, LI Wanying, YIN Linzhi, MA Qian, CHEN Bowen, CHEN Yi. Biomass-derived magnetic carbon composites towards microwave absorption [J]. Journal of Textile Research, 2022, 43(01): 21-27. |
[15] | LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20. |
|