Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 94-103.doi: 10.13475/j.fzxb.20220812110

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Hydrolysis and bonding properties of reactive dyes in non-aqueous medium with minimal water systems

SHAO Min, WANG Lijun, LI Meiqi, LIU Jinqiang, SHAO Jianzhong()   

  1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-08-29 Revised:2022-09-29 Online:2022-11-15 Published:2022-12-26
  • Contact: SHAO Jianzhong E-mail:jshao@zstu.edu.cn

Abstract:

To ascertain the bonding properties of reactive dyes with alcohol hydroxyls on cotton fibers and the accompanying hydrolysis behavior of reactive dyes in non-aqueous medium with minimal water systems, the high performance liquid chromatography (HPLC) and the actual dyeing method were jointly used to study the hydrolysis characteristics of reactive dyes in the solution systems of non-aqueous medium with minimal water, the bonding properties of reactive dyes with alcohol hydroxyl groups in the simulated reaction system using methanol as the simulant of alcohol hydroxyl groups on cellulose fibers, and the dyeing performance of reactive dyes onto cotton fibers in actual non-aqueous medium dyeing system. The results show that, the hydrolysis properties of reactive dyes in the solution system of non-aqueous medium with minimal water mainly depend on the relative concentration of dyes to water, the pH value, and the temperature; the alcoholysis rate of reactive dyes in non-aqueous medium with minimal water system is significantly higher than that in the conventional water bath, and the increase in pH value increases the ratio of alcoholysis percentage to hydrolysis percentage, while the increase in temperature reduces the ratio significantly; the dyeing in non-aqueous medium with minimal water system can achieve ultra-high exhaustion rate of reactive dyes onto cotton in a wide range of pH value and temperature; and the dyeing process for cotton reactive dyeing in non-aqueous medium with minimal water system should adapt the strategy with a comparatively higher pH value and lower temperature, which is beneficial to the dyeing and fixing performance of reactive dyes, and thus beneficial to water-saving and carbon reduction production.

Key words: non-aqueous medium, reactive dye, cotton, hydrolysis, alcoholysis, bonding reaction, high performance liquid chromatography(HPLC)

CLC Number: 

  • TS193.1

Tab.1

Gradient leaching system of C.I. Reactive Red 24 & C.I. Reactive Blue 19"

C.I.活性红24 C.I.活性蓝19
时间/
min
流动相
A/%
流动相
B/%
时间/
min
流动相
A/%
流动相
B/%
0 20 80 0 20 80
10 45 55 5 40 60
15 20 80 15 20 80

Fig.1

HPLC representative chromatograms of reactive dyes in various medium systems. (a)C.I. Reactive Red 24; (b) C.I. Reactive Blue 19"

Fig.2

Peak area percentage of Hydrolyzed reactive dyes vs hydrolysis time in various medium systems. (a)C.I. Reactive Red 24; (b) C.I. Reactive Blue 19"

Fig.3

Percentage of hydrolyzed reactive dyes in various medium systems under various hydrolysis conditions. (a)C.I. Reactive Red 24; (b)C.I. Reactive Blue 19"

Fig.4

Percentages of alcoholized dyes and hydrolyzed dyes of reactive dyes in various medium systems.(a)Alcoholized dyes of C.I. Reactive Red 24;(b)Hydrolyzed dyes of C.I. Reactive Red 24;(c)Alcoholized dyes of C.I. Reactive Blue 19;(d)Hydrolyzed dyes of C.I. Reactive Blue 19"

Fig.5

Schematic diagrams of simulated reaction systems.(a)Conventional water bath;(b)Non-aqueous medium with minimal system"

Fig.6

Percentages of alcoholyzed dyes in non-aqueous medium with minimal water system under various conditions.(a) D5 medium with minimal water; (b) LP medium with minimal water"

Tab.2

Percentages of the alcoholyzed dyes and hydrolyzed dyes in various medium systems at various pH value"

染料 pH值 常规水浴 D5-微水 LP-微水
Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2
C.I.
活性红24
9 5.5 4.3 1.28 54.2 7.0 7.74 54.7 7.4 7.39
10 30.7 18.0 1.71 87.1 11.3 7.71 86.4 10.6 8.15
11 61.9 35.3 1.75 89.0 11.0 8.09 89.5 10.5 8.52
C.I.
活性蓝19
9 18.4 23.7 0.78 86.9 10.7 8.12 82.6 10.3 8.02
10 38.8 45.6 0.85 89.8 10.2 8.80 89.5 10.5 8.52
11 50.3 49.7 1.01 92.7 7.3 12.70 92.9 7.1 13.08

Tab.3

Percentages of alcoholyzed dyes and hydrolyzed dyes in various medium systems at various temperature"

染料 温度/
常规水浴 D5-微水 LP-微水
Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2 Ra/% H2/% Ra:H2
C.I.
活性红24
70 61.9 35.3 1.75 89.0 11.0 8.09 89.5 10.5 8.52
80 46.5 51.9 0.90 82.1 17.9 4.59 81.7 18.3 4.46
90 39.5 60.5 0.65 60.6 39.4 1.54 64.5 35.5 1.82
C.I.
活性蓝19
60 55.6 40.8 1.36 93.7 6.3 14.87 94.1 5.9 15.95
70 50.3 49.7 1.01 92.7 7.3 12.70 92.9 7.1 13.08
80 39.8 60.2 0.66 89.8 10.2 8.80 89.5 10.5 8.52

Tab.4

Exhaustion and hydrolysis percentages of reactive dyes in various medium systems"

染料 染色条件 常规水浴染色体系 D5-微水染色体系 LP-微水染色体系
E/% Hr/% H/% E/% Hr/% H/% E/% Hr/% H/%
C.I.
活性红24
70 ℃/pH=11 11.9 48.1 42.4 97.1 30.7 0.9 98.2 49.2 0.9
80 ℃/pH=11 33.2 96.6 64.6 98.3 93.5 1.6 98.1 94.1 1.8
90 ℃/pH=11 47.3 96.9 51.1 98.1 96.3 1.8 97.9 96.2 2.0
90 ℃/pH=10 26.1 71.7 53.0 98.1 90.5 1.7 97.6 91.4 2.2
C.I.
活性蓝19
60 ℃/pH=11 74.6 60.7 15.4 98.8 46.3 0.6 98.7 48.5 0.6
60 ℃/pH=10 31.3 37.2 25.6 99.6 25.0 0.1 98.4 24.4 0.4
70 ℃/pH=10 60.7 81.0 31.8 98.8 62.4 0.8 99.8 59.1 0.1
80 ℃/pH=10 64.4 85.1 30.3 99.2 69.6 0.6 98.9 72.9 0.8

Fig.7

Comparison of the hydrolyzed dye percentages among solution system, methanol simulated reaction system, and cotton dyeing system with various medium systems. (a) C.I. Reactive Red 24 ; (b) C.I. Reactive Blue 19"

[1] KHATRI A, PEERZADA M H, MOHSIN M, et al. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution[J]. Journal of Cleaner Production, 2015,87, 50-57.
[2] 刘添涛. 印染行业各口径水污染物排放数据对比[J]. 染整技术, 2021, 43(1): 1-2.
LIU Tiantao. Comparison of water pollutant discharge data of different caliber in printing and dyeing industry[J]. Textile Dyeing and Finishing Journal, 2021, 43(1): 1-2.
[3] 缪华丽, 李永强, 付承臣, 等. 棉织物的活性染料/D5悬浮体系染色动力学研究[J]. 纺织学报, 2013, 34(5): 76-81.
MIAO Huali, LI Yongqiang, FU Chengchen, et al. Dyeing kinetics study of reactive dye on cotton in dye/D5 suspending system[J]. Journal of Textile Research, 2013, 34(5): 76-81.
[4] 付承臣. 活性染料/D5悬浮体系全程非水染色技术研究[D]. 杭州: 浙江理工大学, 2016:20-30.
FU Chengchen. A study on non-aqueous dyeing technology in reactive dye/D5 suspension system[D]. Hangzhou: Zhejiang Sci-Tech University, 2016:20-30.
[5] 裴刘军. 硅基非水介质中活性染料微乳液染棉机理研究[D]. 杭州: 浙江理工大学, 2017: 45-52.
PEI Liujun. Study of micro-emulsion reactive dyeing for cotton in siloxane non-aqueous medium[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 45-52.
[6] FU C C, TAO R, WANG J P, et al. Water-saving aftertreatment of reactive dyed cotton fabrics in D5 medium[J]. Journal of The Textile Institute, 2015, 107(6):719-723.
doi: 10.1080/00405000.2015.1061741
[7] PEI L J, GU X M, WANG J P. Sustainable dyeing of cotton fabric with reactive dye in silicone oil emulsion for improving dye uptake and reducing wastewater[J]. Cellulose, 2021 (4): 1-14.
[8] AN Y, MA J R, ZHU Z X, et al. Study on a water-saving and salt-free reactive dyeing of cotton fabrics in non-aqueous medium of liquid paraffin system[J]. Journal of The Textile Institute, 2020, 111(10): 1538-1545.
doi: 10.1080/00405000.2020.1711552
[9] 樊杰, 苗俊华, 安源, 等. 棉织物的活性染料浸轧/非水介质固着工艺[J]. 印染助剂, 2021, 38(5): 39-42.
FAN Jin, MIAO Junhua, AN Yuan, et al. Padding/non-aqueous medium fixation process of cotton fabrics with reactive dyes[J]. Textile Auxiliaries, 2021, 38(5): 39-42.
[10] 朱振旭, 周岚, 黄益, 等. 棉织物的活性染料/液体石蜡体系无盐节水染色[J]. 染整技术, 2017, 39(3): 52-57.
ZHU Zhenxu, ZHOU Lan, HUANG Yi, et al. A water-saving and salt-free dyeing of cotton fabrics with reactive dye/liquid paraffin system[J]. Textile Dyeing and Finishing Journal, 2017, 39(3): 52-57.
[11] 马英, 刘天增. 液体石蜡的应用[J]. 当代化工, 1993 (2): 14-17.
MA Ying, LIU Tianzeng. Application of liquid paraf-fin[J]. Contemporary Chemical Industry, 1993(2): 14-17.
[12] 邵敏. 活性染料与不同亲核基团的反应差异性及多组分织物染色调控技术[D]. 杭州: 浙江理工大学, 2014: 19-23.
SHAO Min. Study on the reaction differences between reactive dyes and different nucleophilic groups and dyeing controlling technology for multi-component fabrics[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 19-23.
[13] 邵敏, 邵建中, 刘今强, 等. 高效液相色谱研究丝素亲核基团与一氯均三嗪型活性染料反应动力学[J]. 分析化学, 2009, 37(7): 989-993.
SHAO Min, SHAO Jianzhong, LIU Jingqiang, et al. Reaction kinetics of monochlorotriazine reactive dyes with neucleophilic groups in silk by high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2009, 37(7): 989-993.
[14] SHAO M, SHAO J Z, LIUJ Q, et al. Study on differences of reaction behavior of phenolic hydroxyl groups with vinyl sulfone reactive dyes and monochlorotriazine reactive dyes[J]. Fibers and Polymers, 2014(9):1865-1872.
[15] 缪华丽, 刘今强. 李永强. 活性染料在D5悬浮染色体系中的水解动力学研究[J]. 纺织学报, 2013, 34(8):77-82.
MIAO Huali, LIU Jinqiang, LI Yongqiang, et al. Study on hydrolysis kinetics of reactive dyes in dye/D5 suspending system[J]. Journal of Textile Research, 2013, 34(8):77-82.
[16] PEI L J, LIU J Q, WANG J P. Study of dichlorotriazine reactive dye hydrolysis in siloxane reverse micro-emulsion[J]. Journal of Cleaner Production, 2017, 165(1): 994-1004.
doi: 10.1016/j.jclepro.2017.07.185
[17] PEI L J, LIU J Q, CAI G, et al. Study of hydrolytic kinetics of vinyl sulfone reactive dye in siloxane reverse micro-emulsion[J]. Textile Research Journal, 2017, 87(19): 2368-2378.
doi: 10.1177/0040517516671123
[18] KLANCNIK M. The influence of temperature on the kinetics of concurrent hydrolysis and methanolysis reactions of a monochlorotriazine reactive dye[J]. Dyes and Pigments, 2000(46):9-15.
[19] 李萍, 邵敏, 邵建中. 活性嫩黄K-6G的水解及醇解动力学研究[J]. 纺织学报, 2009, 30(7): 83-87.
LI Pin, SHAO Min, SHAO Jianzhong. Study on hydrolysis and alcoholysis kinetics of Reactive BrilYellow K-6G[J]. Journal of Textile Research, 2009, 30 (7): 83-87.
[20] 汪正范. 色谱定性与定量[M]. 北京: 化学工业出版社, 2000:163-172.
WANG Zhengfan. Qualitative and quantitative with chromatography[M]. Beijing: Chemical Industry Press, 2000:163-172.
[21] 邵敏, 邵建中, 刘今强, 等. 活性染料与蚕丝亲核基团反应性能的高效液相色谱分析[J]. 分析化学, 2007(5): 672-676.
SHAO Min, SHAO Jianzhong, LIU Jinqiang, et al. High performance liquid chromatography method for investigating the reaction behavior of reactive dyes with neucleophilies on silk by[J]. Chinese Journal of Analytical Chemistry, 2007(5): 672-676.
[22] 李美琪, 邵敏, 安源. 液体石蜡非水介质体系中活性染料的水解性能[J/OL]. 现代纺织技术: 2022-06-13(1-7) [2022-09-30]: DOI: 10.19398/j.att.202204017.
doi: 10.19398/j.att.202204017
LI Meiqi, SHAO Min, AN Yuan, et al. Hydrolysis properties of reactive dyes in liquid paraffin non-aqueous medium system[J/OL]. Advanced Textile Technology: 2022-06-13(1-7). DOI:10.19398/j.att.202204017.
doi: 10.19398/j.att.202204017
[23] 乐一鸣, 李桂贞, 朱正华. 乙烯砜染料水解动力学及其反应机理的研究[J]. 华东化工学院学报, 1988(1):37-45.
LE Yimin, LI Guizhen, ZHU Zhenhua. Study on hydrolysis kinetics and reaction mechanism of vinyl sulfone dyes[J]. Journal of East China University of Science and Technology, 1988(1):37-45.
[24] 于世林. 高效液相色谱方法与应用[M]. 北京: 化学工业出版社, 2000:71.
YU Shilin. High performance liquid chromatography methods and applications[M]. Beijing: Chemical Industry Press, 2000:71.
[25] 何瑾馨. 染料化学[M]. 北京: 中国纺织出版社, 2009: 187-194.
HE Jinxin. Dye chemistry[M]. Beijing: China Textile & Apparel Press, 2009: 187-194.
[26] 宋心远, 沈煜如. 活性染料染色[M]. 北京: 中国纺织出版社, 2019: 70-75.
SONG Xinyuan, SHEN Yuru. Dyeing with reactive dyes[M]. Beijing: China Textile & Apparel Press, 2019: 70-75.
[27] LI M Q, FAN J, AN Y, et al. Thermodynamic characteristics of cotton dyeing with reactive dyes in non-aqueous media[J/OL]. Journal of The Textile Institute, 2022. DOI:10.1080/00405000.2022.210503.
doi: 10.1080/00405000.2022.210503
[1] ZHANG Shuai, FANG Kuanjun, LIU Xiuming, QIAO Xiran. Effect of reactive dye structure on performance of colored polymer nanospheres [J]. Journal of Textile Research, 2022, 43(12): 96-101.
[2] FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118.
[3] QIAO Xiran, FANG Kuanjun, LIU Xiuming, GONG Jixian, ZHANG Shuai, ZHANG Min. Different influence of hydroxyethyl methyl cellulose pretreatment on surface properties of cotton and polyamide [J]. Journal of Textile Research, 2022, 43(11): 127-132.
[4] ZHANG Diandian, YU Mengnan, LI Min, LIU Mingming, FU Shaohai. Preparation and antifouling properties of super-slip cotton fabric based on polymer microspheres grafted with silicone oil [J]. Journal of Textile Research, 2022, 43(10): 119-125.
[5] WU Fan, LI Yong, CHEN Xiaochuan, WANG Jun, XU Minjun. Finite element modeling and simulation of cotton fiber assembly compression based on three-dimensional braided model [J]. Journal of Textile Research, 2022, 43(09): 89-94.
[6] YANG Wenbo, ZHANG Aojie, LIU Youyan, LI Qingyun. Adsorption and decolorization of Reactive Blue 4 by polyurethane foam-immobilized biosystem [J]. Journal of Textile Research, 2022, 43(08): 132-139.
[7] ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8.
[8] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[9] LI Na, WANG Xiao, LI Zhenbao, LI Qian, DU Bing. Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide [J]. Journal of Textile Research, 2022, 43(07): 97-103.
[10] YANG Yao, CHENG Wei, YU Yuanyuan, WANG Qiang, WANG Ping, ZHOU Man. Application of antibacterial and antibacterial adhesion finishing agents in cotton fabric modification [J]. Journal of Textile Research, 2022, 43(07): 104-110.
[11] LI Ruikai, LI Ruichang, ZHU Lin, LIU Xiangyang. System of seven-lead electrocardiogram monitoring based on graphene fabric electrodes [J]. Journal of Textile Research, 2022, 43(07): 149-154.
[12] LI Pingyang, FU Can, DONG Lingling. Preparation and performance of flame retardant and hydrophobic cotton fabric [J]. Journal of Textile Research, 2022, 43(06): 107-114.
[13] WANG Zongqian, CHENG Lüzhu, JIN Xianhua, XIA Liping. Testing method for permethrin content in cotton fabrics based on use of ultraviolet spectroscopy [J]. Journal of Textile Research, 2022, 43(06): 127-132.
[14] XIAO Qi, WANG Rui, ZHANG Shujie, SUN Hongyu, WANG Jingru. Finite element simulation of pilling of polyester/cotton woven fabrics using ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 70-78.
[15] HUANG Yiting, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric [J]. Journal of Textile Research, 2022, 43(06): 94-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .