Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (03): 137-147.doi: 10.13475/j.fzxb.20220907601
• Dyeing and Finishing Engineering • Previous Articles Next Articles
CHEN Rongxuan1,2, SUN Hui1,2(), YU Bin1,2
CLC Number:
[1] |
NIDHEESH P V, ZHOU M, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197: 210-227.
doi: S0045-6535(17)32173-2 pmid: 29366952 |
[2] | 李庆, 吴志强, 李丹, 等. 金属-有机骨架处理印染废水的研究进展[J]. 纺织高校基础科学学报, 2021, 34(3):36-44. |
LI Qing, WU Zhiqiang, LI Dan, et al. Advances in the treatment of printing and dyeing wastewater by metal-organic frameworks[J]. Journal of Basic Science of Textile Universities, 2021, 34(3):36-44. | |
[3] | 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2):112-118. |
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018, 39(2):112-118. | |
[4] |
COTILLAS S, LLANOS J, CAÑIZARES P, et al. Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation[J]. Electrochimica Acta, 2018, 263: 1-7.
doi: 10.1016/j.electacta.2018.01.052 |
[5] | SENGUTTUVAN S, SENTHILKUMAR P, JANAKI V, et al. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters:a review[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.129201. |
[6] |
ESLAMI H, SHARIATIFAR A, RAFIEE E, et al. Decolorization and biodegradation of Reactive Red 198 azo dye by a new Enterococcus faecalis-Klebsiella variicola bacterial consortium isolated from textile wastewater sludge[J]. World Journal of Microbiology and Biotechnology, 2019, 35(3): 1-10.
doi: 10.1007/s11274-018-2566-9 |
[7] |
BANKOLE P O, ADEKUNLE A A, GOVINDWAR S P. Enhanced decolorization and biodegradation of Acid Red 88 dye by newly isolated fungus, Achaetomium strumarium[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 1589-1600.
doi: 10.1016/j.jece.2018.01.069 |
[8] |
DJELLABI R, YANG B, WANG Y, et al. Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr (VI) under narrow visible light[J]. Chemical Engineering Journal, 2019, 366: 172-180.
doi: 10.1016/j.cej.2019.02.035 |
[9] | MRAGUI A E, ZEGAOUI O, SILVA J. Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128931. |
[10] | LIU K, CHEN J, SUN F, et al. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: a review[J]. Science of The Total Environment, 2022.DOI: 10.1016/j.scitotenv.2022.155482. |
[11] |
SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
doi: 10.1021/cr5001892 |
[12] |
ATHANASEKOU C, ROMANOS G E, PAPAGEORGIOU S K, et al. Photocatalytic degradation of hexavalent chromium emerging contaminant via advanced titanium dioxide nanostructures[J]. Chemical Engineering Journal, 2017, 318: 171-180.
doi: 10.1016/j.cej.2016.06.033 |
[13] |
ARFANIS M K, ADAMOU P, MOUSTAKAS N G, et al. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nano-tubes[J]. Chemical Engineering Journal, 2017, 310: 525-536.
doi: 10.1016/j.cej.2016.06.098 |
[14] |
ATHANASEKOU C P, LIKODIMOS V, FALARAS P. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water[J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 7386-7394.
doi: 10.1016/j.jece.2018.07.026 |
[15] | AL-MAMUN M R, KADER S, ISLAM M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review[J]. Journal of Environmental Chemical Engineering, 2019. DOI: 10.1016/j.jece.2019.103248. |
[16] | LEE Y, WADSWORTH L C. Structure and filtration properties of melt blown polypropylene webs[J]. Polymer Engineering & Science, 1990, 30(22): 1413-1419. |
[17] |
HEGDE R R, BHAT G S. Nanoparticle effects on structure and properties of polypropylene meltblown webs[J]. Journal of Applied Polymer Science, 2010, 115(2): 1062-1072.
doi: 10.1002/app.v115:2 |
[18] | SUN F, LI T T, ZHANG X, et al. In situ growth polydopamine decorated polypropylene melt-blown membrane for highly efficient oil/water separation[J]. Chemosphere, 2020. DOI: 10.1016/j.chemosphere.2020.126873. |
[19] | SUN F, LI T T, REN H, et al. PP/TiO2 melt-blown membranes for oil/water separation and photocatalysis: manufacturing techniques and property evaluations[J]. Polymers, 2019.DOI: 10.3390/POLYM11050775. |
[20] | ZHU X, DAI Z, XU K, et al. Fabrication of multifunctional filters via online incorporating nano-TiO2 into spun-bonded/melt-blown nonwovens for air filtration and toluene degradation[J]. Macromolecular Materials and Engineering, 2019. DOI: 10.1002/mame.201900350. |
[21] | PARVATHIRAJA C, KATHERIA S, SIDDIQUI M R, et al. Activated carbon-loaded titanium dioxide nanoparticles and their photocatalytic and antibacterial investigations[J]. Catalysts, 2022.DOI: 10.3390/catal12080834. |
[22] |
ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2010, 4(1): 380-386.
doi: 10.1021/nn901221k pmid: 20041631 |
[23] | WANG X, HU S, GUO Y, et al. Toughened high-flow polypropylene with polyolefin-based elastomers[J]. Polymers, 2019. DOI:10.3390/POLYM11121976. |
[24] | TAMARANI A, ZAINUL R, DEWATA I. Preparation and characterization of XRD nano Cu-TiO2 using sol-gel method[C]// Journal of Physics:Conference Series. Ireland: IOP Publishing, 2019. DOI: 10.1088/1742-6596/1185/1/012020. |
[25] |
BOURIKAS K, KORDULIS C, LYCOURGHIOTIS A. Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts[J]. Chemical Reviews, 2014, 114(19): 9754-9823.
doi: 10.1021/cr300230q pmid: 25253646 |
[26] |
MORENT R, GEYTER N De, LEYS C, et al. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces[J]. Surface and Interface Analysis, 2008, 40(3/4): 597-600.
doi: 10.1002/sia.v40:3/4 |
[27] |
DOONG R, CHANG W. Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107(1-3): 239-244.
doi: 10.1016/S1010-6030(96)04579-0 |
[1] | WANG Peng, SHEN Jiakun, LU Yinhui, SHENG Hongmei, WANG Zongqian, LI Changlong. Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes [J]. Journal of Textile Research, 2023, 44(12): 10-16. |
[2] | HAN Bo, WANG Yulin, SHU Dawu, WANG Tao, AN Fangfang, SHAN Juchuan. Reactive dyeing using recycled dyeing wastewater [J]. Journal of Textile Research, 2023, 44(08): 151-157. |
[3] | WANG Guoqin, FU Xiaohang, ZHU Yuke, WU Liguang, WANG Ting, JIANG Xiaojia, CHEN Huali. Photodegradation mechanism and pathway of visible light-response mesoporous TiO2 for Rhodamine B [J]. Journal of Textile Research, 2023, 44(05): 155-163. |
[4] | WEI Yuhui, ZHENG Chen, CHENG Erxiao, ZHAO Shuhan, SU Zhaowei. Preparation and properties of photocatalytic self-cleaning aramid fabrics [J]. Journal of Textile Research, 2023, 44(05): 171-176. |
[5] | LI Fang, PAN Hang, ZHANG Yaopeng, MA Huijie, SHEN Chensi. Efficient removal of polyvinyl alcohol and synergistic reduction of Cr(VI) from textile wastewater [J]. Journal of Textile Research, 2023, 44(03): 147-157. |
[6] | ZHANG Chudan, WANG Rui, WANG Wenqing, LIU Yanyan, CHEN Rui. Synthesis and properties of cationic modified flame retardant polyester fabrics [J]. Journal of Textile Research, 2022, 43(12): 109-117. |
[7] | HU Qian, YANG Taoyu, ZHU Feichao, LÜ Wangyang, WU Minghua, YU Deyou. Peracetic acid activation for efficient degradation of p-nitrophenol by mixed-valence iron-based metal-organic framework [J]. Journal of Textile Research, 2022, 43(11): 133-140. |
[8] | ZHENG Linjuan, YU Jia, YIN Chong, LIANG Zhijie, MAO Qinghui. Preparation and photocatalytic properties of cotton fabrics loaded with polymetallic organic framework material [J]. Journal of Textile Research, 2022, 43(10): 106-111. |
[9] | FENG Yan, LI Liang, LIU Shuping, LI Shujing, LIU Rangtong. Photocatalytic synergistic efficiency of viscose fabric loaded with nitrogen carbon quantum dots/titanium dioxide [J]. Journal of Textile Research, 2022, 43(10): 112-118. |
[10] | ZHOU Xiaoju, HU Zhenglong, REN Yiming, XIE Landong. Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst [J]. Journal of Textile Research, 2022, 43(10): 97-105. |
[11] | YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation [J]. Journal of Textile Research, 2022, 43(09): 149-155. |
[12] | WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal\|organic framework/activated carbon fiber composites [J]. Journal of Textile Research, 2022, 43(08): 126-131. |
[13] | ZHANG Yaning, ZHANG Hui, SONG Yueyue, LI Wenming, LI Wenjun, YAO Jiale. Preparation of discarded mask-based ZIF-8/Ag/TiO2 composite and its photocatalytic property for dye degradation [J]. Journal of Textile Research, 2022, 43(07): 111-120. |
[14] | GAO Luxi, LÜ Xuechuan, ZHANG Chi, SONG Hanlin, GAO Xiaohan. Synthesis and decolorizing performance of modified flocculant for treating dyeing wastewater [J]. Journal of Textile Research, 2022, 43(07): 121-128. |
[15] | FEI Jianwu, LÜ Mingze, LIU Liwei, WANG Chunhong, HAN Zhenbang. Construction of air-liquid-solid tri-phase system from bilayer micro/nanofiber membrane and its photocatalytic performance [J]. Journal of Textile Research, 2022, 43(06): 37-43. |
|