Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (01): 220-229.doi: 10.13475/j.fzxb.20221005502
• Comprehensive Review • Previous Articles Next Articles
CHEN Yong1,2, YE Mengting1,2, WANG Chaosheng1,2(), WU Jing1,2,3, WANG Huaping1,2
CLC Number:
[1] |
ZHENG Tingting, ZHANG Menglu, WU Lianghuan, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5: 388-396.
doi: 10.1038/s41929-022-00775-6 |
[2] |
LI Zhongling, WU Wenlong, WANG Menglin, et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins[J]. Nature Communications, 2022, 13: 2396-2406.
doi: 10.1038/s41467-022-29971-5 pmid: 35504867 |
[3] | CHEN Junliang, WU Jing, SHERRELL P C, et al. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling[J]. Advanced Science, 2022. DOI:10.1002/advs.202103764. |
[4] | ZHOU Dawang, CHEN Junliang, WU Jing, et al. Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution[J]. Sustainable Materials and Technologies, 2021. DOI:10.1016/j.susmat.2021.e00251. |
[5] |
EMIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017, 59: 526-536.
doi: S0956-053X(16)30561-X pmid: 27742230 |
[6] | PERERA K Y, AISWAL S, JAISWAL A. A review on nanomaterials and nanohybrids based bio-nanocomposites for food packaging[J]. Food Chemistry, 2021. DOI: 10.1016/j.foodchem.2021.131912. |
[7] | NORIZAN M N, ABDAN K, TAWAKKAL I A, et al. A review on properties and application of bio-based poly(butylene succinate)[J]. Polymers, 2021. DOI: 10.3390/polym13091436. |
[8] | TACHIBANA Y, MASUDA T, FUNABASHI M, et al. Synthesis of biomass-based monomers from biomass-based furfural for polyesters and evaluation of their biomass carbon ratios[J]. ACS Symposium Series, 2012, 1105: 91-110. |
[9] | PLATNIEKS O, GAIDUKOVS S, KUMAR T V, et al. Bio-based poly (butylene succinate): recent progress, challenges and future opportunities[J]. European Polymer Journal, 2021. DOI: 10.1016/j.eurpolymj.110855. |
[10] |
XU Jun, GUO Baohua. Poly (butylene succinate) and its copolymers: research, development and industrialization[J]. Biotechnology Journal, 2010, 5(11): 1149-1163.
doi: 10.1002/biot.201000136 pmid: 21058317 |
[11] |
WANG Xin, YANG Hongyu, SONG Lei, et al. Morphology, mechanical and thermal properties of graphene-reinforced poly (butylene succinate) nanocomposites[J]. Composites Science and Technology, 2011, 72(1): 1-6.
doi: 10.1016/j.compscitech.2011.05.007 |
[12] | MIKEL R I, MANUEL S, SENENTXU L M, et al. Magnetically active nanocomposites based on biodegradable polylactide, polycaprolactone, polybutylene succinate and polybutylene adipate terephthalate[J]. Polymer, 2022, 249(17): 1-10. |
[13] | KANTIMA C, CHUNTIP S. Effect of nanoclay and nano-calcium carbonate content on the properties of polybutylene succinate/nanoparticle composites[J]. Journal of Plastic Film & Sheeting, 2023, 1(1): 1-21. |
[14] |
HOU Hongbo, PU Zejun, WANG Xu, et al. Effect of surface modification of SiO2 particles on the interfacial and mechanical properties of PBS composites[J]. Polymer Composites, 2022, 43(8): 5087-5094.
doi: 10.1002/pc.v43.8 |
[15] | BHATIA A, GUPTA R K, BHATTACHARYA S N, et al. Compatibility of biodegradable poly(lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application[J]. Korea-Australia Rheology Journal, 2007, 19(3): 125-131. |
[16] |
WU Defeng, YUAN Lijuan, LAREDO E, et al. Interfacial properties, viscoelasticity, and thermal behaviors of poly (butylene succinate)/polylactide blend[J]. Industrial & Engineering Chemistry Research, 2012, 51(5): 2290-2298.
doi: 10.1021/ie2022288 |
[17] |
HAO Yanping, YANG Huili, PAN Hongwei, et al. Heat resistant and mechanical properties of biodegradable poly (lactic acid)/poly (butylene succinate) blends crosslinked by polyaryl polymethylene isocyanate[J]. Polymer-Plastics Technology and Engineering, 2018, 57(18): 1882-1892.
doi: 10.1080/03602559.2018.1447123 |
[18] | WERAPORN P A, SUPAPHORN T, SOMMAI P A, et al. Mechanical properties and crystallization of talc filled poly(lactic acid)/poly(butylene succinate) blend composites[J]. Antec, 2013: 239-243. |
[19] |
LARGUECH S, TRIKI A, RAMACHANDRAN M, et al. Dielectric properties of jute fibers reinforced poly(lactic acid)/poly(butylene succinate) blend matrix[J]. Journal of Polymers and the Environment, 2020, 29(4): 1240-1256.
doi: 10.1007/s10924-020-01927-0 |
[20] | NOBILE M R, CROCITTI A, MALINCONICO M, et al. Preparation and characterization of polybutylene succinate (PBS) and polybutylene adipate-terephthalate (PBAT) biodegradable blends[C]// 9th International Conference on “Times of Polymers and Composites”:from Aerospace to Nanotechnology. Ischia: American Institute of Physics, 2018: 17-21. |
[21] |
QIU Zhaobing, KOMURA M, IKEHARA T, et al. Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters: poly(butylene succinate) and poly(ε-caprolactone)-science direct[J]. Polymer, 2003, 44(25): 7749-7756.
doi: 10.1016/j.polymer.2003.10.013 |
[22] |
KATAOKA T, HIRAMOTO K, KURIHARA H, et al. Effects of melt annealing on the miscibility and crystallization of poly (butylene succinate)/poly (ethylene succinate) blends[J]. Polymer Journal, 2014, 46(7): 405-411.
doi: 10.1038/pj.2014.11 |
[23] |
HSU K H, CHEN C W, WANG L Y, et al. Bio-based thermoplastic poly(butylene succinate-co-propylene succinate) copolyesters: effect of glycerol on thermal and mechanical properties[J]. Soft Matter, 2019, 15 (47): 9710-9720.
doi: 10.1039/C9SM01958H |
[24] | JING Jing, LI Song, SU Tingting, et al. Effects of monomer composition on physical properties and enzymatic hydrolyzability of poly(butylene succinate-co-hexamethylene succinate)s[J]. Polymer Engineering & Science, 2020, 61(2): 379-387. |
[25] | DAI Xun, QIU Zhaobin. Synthesis and properties of novel biodegradable poly(butylene succinate-co-decamethylene succinate) copolyesters from renewable resources[J]. Polymer Degradation and Stability, 2016: 305-310. |
[26] | 戴勋. 聚丁二酸丁二醇酯共聚物的合成、结晶行为与性能研究[D]. 北京: 北京化工大学, 2017:41-65. |
DAI Xun. Synthesis, crystallization behavior and properries of poly (butylene succinate) and its copolyesters[D]. Beijing: Beijing University of Chemical Technology, 2017: 41-65. | |
[27] |
DEBUISSY Thibaud, POLLET Eric, AVEROUS Luc. Synthesis and characterization of biobased poly(butylene succinate-ran-butylene adipate): analysis of the composition-dependent physicochemical properties[J]. European Polymer Journal, 2017, 87: 84-98.
doi: 10.1016/j.eurpolymj.2016.12.012 |
[28] |
DÍAZ A, FRANCO L, PUIGGALI J. Study on the crystallization of poly(butylene azelate-co-butylene succinate) copolymers[J]. Thermochimica Acta, 2014, 575: 45-54.
doi: 10.1016/j.tca.2013.10.013 |
[29] |
AMIN Cao, TAKASHI Okamura, CHIEKO Ishiguro, et al. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)s[J]. Polymer, 2002, 43(3): 671-679.
doi: 10.1016/S0032-3861(01)00658-9 |
[30] |
WU Linbo, MINCHEVA R, XU Yutao, et al. High molecular weight poly (butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties[J]. Biomacromolecules, 2012, 13(9): 2973-2981.
doi: 10.1021/bm301044f pmid: 22830993 |
[31] |
QI Jiefei, WU Jing, CHEN Jingying, et al. An investigation of the thermal and biodegradability of PBS copolyesters based on isosorbide[J]. Polymer Degradation and Stability, 2019, 160: 229-241.
doi: 10.1016/j.polymdegradstab.2018.12.031 |
[32] |
QU Dezhi, WANG Lipeng, SUN Shuai, et al. Properties of poly(butylene-co-isosorbide succinate) after blown film extrusion[J]. Green Materials, 2020, 8(2): 68-78.
doi: 10.1680/jgrma.19.00017 |
[33] |
JIN H J, LEE B Y, KIM M N, et al. Thermal and mechanical properties of mandelic acid-copolymerized poly(butylene succinate) and poly(ethylene adipate)[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(11): 1504-1511.
doi: 10.1002/(ISSN)1099-0488 |
[34] | WANG L, ZHANG M, LAWSON T, et al. Poly (butylene succinate-co-salicylic acid) copolymers and their effect on promoting plant growth[J]. Royal Society Open Science, 2019. DOI:10.1098/rsos.190504. |
[35] |
NAGATA M, GOTO H, SAKAI W, et al. Synthesis and enzymatic degradation of poly(tetramethylene succinate) copolymers with terephthalic acid[J]. Polymer, 2000, 41(11): 4373-4376.
doi: 10.1016/S0032-3861(99)00727-2 |
[36] |
LUO Shengli, LI Faxue, YU Jianyong. The thermal, mechanical and viscoelastic properties of poly (butylene succinate-co-terephthalate) (PBST) copolyesters with high content of BT units[J]. Journal of Polymer Research, 2010, 18 (3): 393-400.
doi: 10.1007/s10965-010-9429-x |
[37] |
SUN Yongjian, WU Linbo, BU Zhiyang, et al. Synthesis and thermomechanical and rheological properties of biodegradable long-chain branched poly (butylene succinate-co-butylene terephthalate) copolyesters[J]. Industrial & Engineering Chemistry Research, 2014, 53(25): 10380-10386.
doi: 10.1021/ie501504b |
[38] | 赵彩霞, 李鑫, 范期程, 等. 聚(丁二酸丁二醇-co-二苯醚二甲酸丁二醇)酯的合成及性能[J]. 高分子材料科学与工程, 2019, 35(12): 36-43. |
ZHAO Caixia, LI Xin, FAN Qichen, et al. Synthesis and properties of poly (butylene succinate-co-oxybisbenzoic)[J]. Polymer Materials Science and Engineering, 2019, 35(12): 36-43. | |
[39] |
NIKOLIC M S, POLETI D. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s[J]. European Polymer Journal, 2003, 39 (11): 2183-2192.
doi: 10.1016/S0014-3057(03)00139-3 |
[40] |
YE H M, WANG R D, LIU J, et al. Isomorphism in poly (butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly (butylene succinate)[J]. Macromolecules, 2012, 45 (14): 5667-5675.
doi: 10.1021/ma300685f |
[41] |
LI Yi, HUANG Guoyong, CHEN Cong. et al. Poly (butylene succinate-co-butylene acetylenedicarb-oxylate): copolyester with novel nucleation behavior[J]. Polymers, 2021, 13 (3): 365-378.
doi: 10.3390/polym13030365 |
[42] |
ZENG J B, HUANG C L, JIAO L, et al. Synthesis and properties of biodegradable poly (butylene succinate-co-diethylene glycol succinate) copolymers[J]. Industrial & Engineering Chemistry Research, 2012, 51 (38): 12258-12265.
doi: 10.1021/ie300133a |
[43] |
GENOVESE L, LOTTI N, GAZZANO M, et al. Novel biodegradable aliphatic copolyesters based on poly-(butylene succinate) containing thioether-linkages for sustainable food packaging applications[J]. Polymer Degradation and Stability, 2016, 132: 191-201.
doi: 10.1016/j.polymdegradstab.2016.02.022 |
[44] |
NEGRIN M, MACERATA E, CONSOLATI G, et al. Gamma radiation effects on random copolymers based on poly(butylene succinate) for packaging appli-cations[J]. Radiation Physics and Chemistry, 2018, 142: 34-43.
doi: 10.1016/j.radphyschem.2017.05.011 |
[45] |
FABBRI M, GIGLI M, COSTA M, et al. The effect of plasma surface modification on the biodegradation rate and biocompatibility of a poly (butylene succinate)-based copolymer[J]. Polymer Degradation and Stability, 2015, 121: 271-279.
doi: 10.1016/j.polymdegradstab.2015.09.015 |
[46] | ONO H, MINAMIKAWA H, NEMOTO K, et al. Self-assembly and amphiphilic behavior of poly (ester)-block-poly (amide) diblock copolymer based on biodegradable poly (butylene succinate) and poly (2-pyrrolidone)[J]. European Polymer Journal, 2021. DOI: 10.1016/j.eurpolymj.2021.110961. |
[47] |
NAGHAVI S S, RAFIZADEH M, AFSHAR T, et al. Crystallization and photo-curing kinetics of biodegradable poly (butylene succinate-co-butylene fumarate) short-segmented block copolyester[J]. Polymer International, 2017, 66(2): 289-299.
doi: 10.1002/pi.2017.66.issue-2 |
[48] |
ZHENG Liuchun, WANG Zhaodong, WU Shaohua, et al. Novel poly (butylene fumarate) and poly (butylene succinate) multiblock copolymers bearing reactive carbon-carbon double bonds: synthesis, characterization, co-crystallization, and properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6147-6155.
doi: 10.1021/ie303573d |
[49] |
HUANG Caili, JIAO Ling, ZHANG Jingjing, et al. Poly (butylene succinate)-poly (ethylene glycol) multiblock copolymer: synthesis, structure, properties and shape memory performance[J]. Polymer Chemistry, 2012, 3(3): 800-808.
doi: 10.1039/c2py00603k |
[50] |
ZOU J, QI Y, SU L, et al. Synthesis and characterization of poly (ester amide)s consisting of poly (L-lactic acid) and poly(butylene succinate) segments with 2,2'-bis(2-oxazoline) chain extending[J]. Macromolecular Research, 2018, 26 (13): 1212-1218.
doi: 10.1007/s13233-019-7018-3 |
[51] | 黎永利. 扩链改性聚乳酸嵌段共聚物的研究[D]. 西安: 陕西科技大学, 2014: 26-40. |
LI Yongli. Studay on chain-extension and modification of poly (lactic acid) block copolymer[D]. Xi'an: Shaanxi University of Science & Technology, 2014: 26-40. | |
[52] |
ZHOU Xiaoming, XIE Wenjie. Synthesis and characterization of poly(ester ether urethane)s block copolymers based on biodegradable poly (butylene succinate) and poly(ethylene glycol)[J]. Polymer Degradation and Stability, 2017, 140: 147-155.
doi: 10.1016/j.polymdegradstab.2017.04.023 |
[53] |
WANG Jin, ZHENG Liuchun, LI Chuncheng, et al. Synthesis and properties of biodegradable poly (ester-co-carbonate) multiblock copolymers comprising of poly (butylene succinate) and poly (butylene carbonate) by chain extension[J]. Industrial & Engineering Chemistry Research, 2012, 51(33): 10785-10792.
doi: 10.1021/ie300547g |
[54] |
PANWIRIYARAT W, TANRATTANAKUL V, CHUEANGCHAYAPHAN N. Study on physicochemical properties of poly (ester-urethane) derived from biodegradable poly(ε-caprolactone) and poly (butylene succinate) as soft segments[J]. Polymer Bulletin, 2016, 74(6): 2245-2261.
doi: 10.1007/s00289-016-1833-x |
[55] | SHANG Yaqing, JIANG Zhiguo, QIU Zhaobin. Synthesis, thermal and mechanical properties of novel biobased, biodegradable and double crystalline poly-(butylene succinate)-b-poly(butylene sebacate) multiblock copolymers[J]. Polymer, 2021. DOI: 10.1016/j.polymer.2020.123248. |
[56] |
ZHENG Liuchun, LI Chuncheng, WANG Zhaodong, et al. Novel biodegradable and double crystalline multiblock copolymers comprising of poly(butylene succinate) and poly(ε-caprolactone): synthesis, characterization, and properties[J]. Industrial & Engineering Chemistry Research, 2012, 51 (21): 7264-7272.
doi: 10.1021/ie300576z |
[57] |
LI Shaolong, WU Fang, YANG Yang, et al. Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers[J]. Polymers for Advanced Technologies, 2015, 26 (8): 1003-1013.
doi: 10.1002/pat.3519 |
[58] |
ZHENG Liuchun, LI Chuncheng, ZHANG Dong, et al. Synthesis, characterization and properties of novel biodegradable multiblock copolymers comprising poly(butylene succinate) and poly (1,2-propylene terephthalate) with hexamethylene diisocyanate as a chain extender[J]. Polymer International, 2011, 60(4): 666-675.
doi: 10.1002/pi.v60.4 |
[59] | 段荣涛, 董雪, 李德福, 等. 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能[J]. 高分子学报, 2016, 1 (8): 70-77. |
DUAN Rongtao, DONG Xue, LI Defu, et al. Preparation and properties of bio-based PBS multiblock copolyesters containing isosorbide units[J]. Acta Polymerica Sinica, 2016, 1 (8): 70-77. | |
[60] |
ZHANG Yang, LI Ting, XIE Zhining, et al. Synthesis and properties of biobased multiblock polyesters containing poly(2,5-furandimethylene succinate) and poly(butylene succinate) blocks[J]. Industrial & Engineering Chemistry Research, 2017, 56 (14): 3937-3946.
doi: 10.1021/acs.iecr.7b00516 |
[61] |
ZHENG Liuchun, LI Chuncheng, HUANG Weiguo, et al. Synthesis of high-impact biodegradable multiblock copolymers comprising of poly (butylene succinate) and poly(1,2-propylene succinate) with hexamethylene diisocyanate as chain extender[J]. Polymers for Advanced Technologies, 2011, 22 (2): 279-285.
doi: 10.1002/pat.v22.2 |
[62] |
LI Shaolong, WU Fang, WANG Yuzhong, et al. Biobased thermoplastic poly(ester urethane) elastomers consisting of poly (butylene succinate) and poly(propylene succinate)[J]. Industrial & Engineering Chemistry Research, 2015, 54 (24): 6258-6268.
doi: 10.1021/acs.iecr.5b00637 |
[63] |
LI Shaolong, WU Fang, YANG Yang, et al. Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b- poly(diethylene glycol succinate) multiblock copolymers[J]. Polymers for Advanced Technologies, 2015, 26(8): 1003-1013.
doi: 10.1002/pat.3519 |
[64] |
LI Shaolong, ZENG Jianbing, WU Fang, et al. Succinic acid based biodegradable thermoplastic poly (ester urethane) elastomers: effects of segment ratios and lengths on physical properties[J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1404-1414.
doi: 10.1021/ie402499t |
[65] | SU S, KOPITZKY R, TOLGA S, et al. Poly-lactide (PLA) and its blends with poly (butylene succinate) (PBS): a brief review[J]. Polymers (Basel), 2019.DOI: 10.3390/polym11071193. |
[66] |
TAN Licheng, CHEN Yiwang, ZHOU Weihua, et al. Novel poly(butylene succinate-co-lactic acid) copolyesters: synthesis, crystallization, and enzymatic degradation[J]. Polymer Degradation and Stability, 2010, 95 (9): 1920-1927.
doi: 10.1016/j.polymdegradstab.2010.04.010 |
[67] |
ZENG Jianbing, LIU Cong, LIU Fangyang, et al. Miscibility and crystallization behaviors of poly (butylene succinate) and poly (L-lactic acid) segments in their multiblock copoly(ester urethane)[J]. Industrial & Engineering Chemistry Research, 2010, 49 (20): 9870-9876.
doi: 10.1021/ie101444x |
|