Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (05): 228-238.doi: 10.13475/j.fzxb.20221105502
• Comprehensive Review • Previous Articles Next Articles
LU Yan1,2, HONG Yan1,2, FANG Jian1,2()
CLC Number:
[1] | LIU K, TEBYETEKERWA M, JI D, et al. Intelligent Materials[J]. Matter, 2020, 3(3): 590-593. |
[2] | 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9): 1-9. |
FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fibrous materials for intelligent wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9. | |
[3] | 房翔敏, 曲丽君, 田明伟. 自供电纺织基柔性应变传感器研究进展[J]. 丝绸, 2022, 59(8): 36-47. |
FANG Xiangmin, QU Lijun, TIAN Mingwei. Research progress of self-powered textile-based flexible stress sensors[J]. Journal of Silk, 2022, 59(8): 36-47. | |
[4] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177. |
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177. | |
[5] | WANG Y, ZHU L, MEI D, et al. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites[J]. Journal of Materials Chemistry C, 2019, 7(28): 8669-8679. |
[6] | WIEDERHOLD G, MCCARTHY J. Arthur samuel: pioneer in machine learning[J]. IBM Journal of Research and Development, 1992, 36(3): 329-331. |
[7] | CAI G, WANG J, QIAN K, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science, 2017. DOI: 10.1002/advs.201600190. |
[8] | SURESH KUMAR V, KRISHNAMOORTHI C. Development of electrical transduction based wearable tactile sensors for human vital signs monitor: fundamentals, methodologies and applications[J]. Sensors and Actuators A: Physical, 2021. DOI: 10.1016/j.sna.2021.112582. |
[9] | HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366. |
[10] | PUNEETHA P, MALLEM S P R, LEE Y W, et al. Strain-controlled flexible graphene/GaN/PDMS sensors based on the piezotronic effect[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36660-36669. |
[11] | QIU A, JIA Q, YU H, et al. Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements[J]. Materials Today Communications, 2021, 26: 1-11. |
[12] | GUO J, ZHOU B, ZONG R, et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33589-33598. |
[13] | TANG X, MIAO Y, CHEN X, et al. A flexible and highly sensitive inductive pressure sensor array based on ferrite films[J]. Sensors (Basel), 2019, 19(10): 1-12. |
[14] | MA S, TANG J, YAN T, et al. Performance of flexible strain sensors with different transition mechanisms: a review[J]. IEEE Sensors Journal, 2022, 22(8): 7475-7498. |
[15] | FIORILLO A S, CRITELLO C D, PULLANO S A. Theory, technology and applications of piezoresistive sensors: a review[J]. Sensors and Actuators A: Physical, 2018, 281: 156-175. |
[16] | MITSUHIRO Shikidaa T S, KAZUO Satob, KOICHI Itoigawa. Active tactile sensor for detecting contact force and hardness of an object[J]. Sensors and Actuators A (Physical), 2003, 103(1/2): 213-218. |
[17] | PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26(16): 2514-2520. |
[18] | MAKIHATA M, MUROYAMA M, TANAKA S, et al. Design and fabrication technology of low profile tactile sensor with digital interface for whole body robot skin[J]. Sensors (Basel), 2018. DOI: 10.3390/s18072374. |
[19] | 赵利端, 刘丽妍, 何崟, 等. 基于碳纳米管的柔性应变传感器研究进展[J]. 材料科学与工程学报, 2022, 40(5): 883-889,908. |
ZHAO Liduan, LIU Liyan, HE Yin, et al. Research progress on carbon nanotube flexible sensors[J]. Journal of Materials Science & Engineering, 2022, 40(5): 883-889,908. | |
[20] | CHEN T, QIAO X, WEI P, et al. Tough gel-fibers as strain sensors based on strain-optics conversion induced by anisotropic structural evolution[J]. Chemistry of Materials, 2020, 32(22): 9675-9687. |
[21] | YANG H, FU J, CAO R, et al. A liquid lens-based optical sensor for tactile sensing[J]. Smart Materials and Structures, 2022. DOI: 10.1088/1361-665x/ac4d64. |
[22] | CHI C, SUN X, XUE N, et al. Recent progress in technologies for tactile sensors[J]. Sensors (Basel), 2018, 18(4): 1-29. |
[23] | TAO J, BAO R, WANG X, et al. Self-powered tactile sensor array systems based on the triboelectric effect[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201806379. |
[24] | YANG H L, XIE X Z, KADOCH M. Machine learning techniques and a case study for intelligent wireless networks[J]. IEEE Network, 2020, 34(3): 208-215. |
[25] | JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospectsing of nano-fibres[J]. Science, 2015, 349(6245): 255-260. |
[26] | WANG M, CUI Y, WANG X, et al. Machine learning for networking: workflow, advances and opportuni-ties[J]. IEEE Network, 2018, 32(2): 92-99. |
[27] | DUAN L, CUI S, QIAO Y, et al. Clustering based on supervised learning of exemplar discriminative information[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(12): 5255-5270. |
[28] | NIKBAKHT R, JONSSON A, LOZANO A. Unsupervised learning for parametric optimization[J]. IEEE Communications Letters, 2021, 25(3): 678-681. |
[29] | MATSUO Y, LECUN Y, SAHANI M, et al. Deep learning, reinforcement learning, and world models[J]. Neural Networks, 2022. DOI: 10.1016/j.neunet.2022.03.037. |
[30] | LIU Z, HUANG S, JIN W, et al. Broad learning system for semi-supervised learning[J]. Neurocomputing, 2021, 444: 38-47. |
[31] | WU J, SHENG V S, ZHANG J, et al. Multi-label active learning algorithms for image classification: overview and future promise[J]. ACM Computing Surveys, 2020. DOI: 10.1145/3379504. |
[32] | MANIA H, JORDAN M I, RECHT B. Active learning for nonlinear system identification with guarantees[J]. Journal of Machine Learning Research, 2022, 23(32): 1-30. |
[33] | DEN HENGST F, FRANçOIS-LAVET V, HOOGENDOORN M, et al. Planning for potential: efficient safe reinforcement learning[J]. Machine Learning, 2022, 111(6): 2255-2274. |
[34] | SHIRMOHAMMADLI V, BAHREYNI B. Machine learning for sensing applications: a tutorial[J]. IEEE Sensors Journal, 2022, 22(11): 10183-10195. |
[35] | JEON H, JUNG Y, LEE S, et al. Area-efficient short-time fourier transform processor for time-frequency analysis of non-stationary signals[J]. Applied Sciences, 2020. DOI: 10.3390/app10207208. |
[36] | HIRSCHBERG V, RODRIGUE D. Fourier trans-form (ft) analysis of the stress as a tool to follow the fatigue behavior of metals[J]. Applied Sciences, 2021, 11(8): 1-15. |
[37] | JI Y, WANG H. A revised Hilbert-Huang transform and its application to fault diagnosis in a rotor system[J]. Sensors (Basel), 2018. DOI: 10.3390/s18124329. |
[38] | GRADOLEWSKI D, MAGENES G, JOHANSSON S, et al. A wavelet transform-based neural network denoising algorithm for mobile phonocardiography[J]. Sensors (Basel), 2019, 19(4): 1-18. |
[39] |
DONATELLI R E, PARK J A, MATHEWS S M, et al. Time series analysis[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2022, 161(4): 605-608.
doi: 10.1016/j.ajodo.2021.07.013 pmid: 35337650 |
[40] | JIANG H, XIONG H, WU D, et al. AgFlow: fast model selection of penalized PCA via implicit regularization effects of gradient flow[J]. Machine Learning, 2021, 110(8): 2131-2150. |
[41] |
PRAVEEN KUMAR D, AMGOTH T, ANNAVARAPU C S R. Machine learning algorithms for wireless sensor networks: a survey[J]. Information Fusion, 2019, 49: 1-25.
doi: 10.1016/j.inffus.2018.09.013 |
[42] |
UNO K, ADACHI K, TRENDAFILOV N T. Clustered common factor exploration in factor analysis[J]. Psychometrika, 2019, 84(4): 1048-1067.
doi: 10.1007/s11336-019-09666-5 pmid: 30847650 |
[43] | LI Z, LI S. Neural network model-based control for manipulator: an autoencoder perspective[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/tnnls.2021.3109953. |
[44] | KRAWCZYK B. Tensor decision trees for continual learning from drifting data streams[J]. Machine Learning, 2021, 110: 3015-3035. |
[45] | HU X, LI Y, CHEN G, et al. Identification of balance recovery patterns after slips using hierarchical cluster analysis[J]. Journal of Biomechanics, 2022. DOI: 10.1016/j.jbiomech.2022.111281. |
[46] |
LEE L C, LIONG C Y, JEMAIN A A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps[J]. Analyst, 2018, 143(15): 3526-3539.
doi: 10.1039/c8an00599k pmid: 29947623 |
[47] | HUANG J-C, KO K-M, SHU M-H, et al. Application and comparison of several machine learning algorithms and their integration models in regression problems[J]. Neural Computing and Applications, 2019, 32(10): 5461-5469. |
[48] | KONG P-Y. Distributed sensor clustering using artificial neural network with local information[J]. IEEE Internet of Things Journal, 2022, 9(21): 21851-21861. |
[49] | NGUYEN T D, LEE J S. Recent development of flexible tactile sensors and their applications[J]. Sensors (Basel), 2021, 22(1): 1-24. |
[50] | FANG Y, ZOU Y, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021. DOI:10.1002/adma.202104178. |
[51] | ZHANG Q, JIN T, CAI J, et al. Wearable triboelectric sensors enabled gait analysis and waist motion capture for iot-based smart healthcare applications[J]. Advanced Science, 2022. DOI:10.1002/advs.202103694. |
[52] | GHOLAMI M, NAPIER C, PATINO A G, et al. Fatigue monitoring in running using flexible textile wearable sensors[J]. Sensors (Basel), 2020, 20(19): 1-11. |
[53] | SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702. |
[54] | RAVENSCROFT D, PRATTIS I, KANDUKURI T, et al. Machine learning methods for automatic silent speech recognition using a wearable graphene strain gauge sensor[J]. Sensors (Basel), 2021, 22(1): 1-13. |
[55] | ZHANG Z, HE T, ZHU M, et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications[J]. npj Flexible Electronics, 2020, 4(1): 1-12. |
[56] | 荣百川. 基于机器学习的摔倒识别研究[D]. 南京: 南京信息工程大学, 2021: 19-34. |
RONG Baichuan. Research on fall recognition based on machine learning[D]. Nanjing: Nanjing Univeristy of Information Science & Technology, 2021: 19-34. | |
[57] | WANG Z, BU M, XIU K, et al. A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in parkinsonian and hemiplegic patients[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107978. |
[58] | ZHOU Z, CHEN K, LI X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571-578. |
[59] | WU X, LUO X, SONG Z, et al. Ultra-robust and sensitive flexible strain sensor for real-time and wearable sign language translation[J]. Advanced Functional Materials, 2023. DOI:10.1002/adtm.202303504. |
[60] | WOJCIK K, PIEKARCZYK M. Machine learning methodology in a system applying the adaptive strategy for teaching human motions[J]. Sensors (Basel), 2020, 20(1): 1-23. |
[61] |
CHEN M, OUYANG J, JIAN A, et al. Imperceptible, designable, and scalable braided electronic cord[J]. Nat Commun, 2022, 13(1): 7097.
doi: 10.1038/s41467-022-34918-x pmid: 36402785 |
[1] | JU Yu, WANG Zhaohui, LI Boyi, YE Qinwen. Employee efficiency prediction of garment production line based on machine learning [J]. Journal of Textile Research, 2024, 45(05): 183-192. |
[2] | PENG Laihu, HOU Liangmei, QI Yubao, RU Xin, LIU Jianting. Yarn tension signal processing method based on adaptive Loess principle [J]. Journal of Textile Research, 2024, 45(02): 246-254. |
[3] | DONG Kai, LÜ Tianmei, SHENG Feifan, PENG Xiao. Advances in smart textiles oriented to personalized healthcare [J]. Journal of Textile Research, 2024, 45(01): 240-249. |
[4] | WANG Hanchen, WU Jiayin, HUANG Biao, LU Qilin. Fabrication and properties of biocompatible nanocellulose self-healing hydrogels [J]. Journal of Textile Research, 2023, 44(12): 17-25. |
[5] | WANG Menglei, WANG Jing'an, GAO Weidong. Research progress in computer aided cotton blending technology [J]. Journal of Textile Research, 2023, 44(08): 225-233. |
[6] | WANG Zhongyu, SU Yun, WANG Yunyi. Development of personal comfort models based on machine learning and their application prospect in clothing engineering [J]. Journal of Textile Research, 2023, 44(05): 228-236. |
[7] | PENG Yangyang, SHENG Nan, SUN Fengxin. Scalable construction and performance of fiber-based flexible moisture-responsive actuators [J]. Journal of Textile Research, 2023, 44(02): 90-95. |
[8] | NIU Li, LIU Qing, CHEN Chaoyu, JIANG Gaoming, MA Pibo. Fabrication and performances of self-powering knitted sensing fabric with bionic scales [J]. Journal of Textile Research, 2023, 44(02): 135-142. |
[9] | WU Jing, HAN Chenchen, GAO Weidong. Properties and applications of yarn-based actuators based on skeletalmuscle-like structure [J]. Journal of Textile Research, 2023, 44(02): 128-134. |
[10] | PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86. |
[11] | XIAO Yuan, LI Qian, ZHANG Wei, HU Hanchun, GUO Xinlei. Influencing factors on flexible fabric-based electrical circuit formation by micro-jet printed primary cell replacement deposition [J]. Journal of Textile Research, 2022, 43(10): 89-96. |
[12] | LIU Huanhuan, WANG Zhaohui, YE Qinwen, CHEN Ziwei, ZHENG Jingjin. Progress and trends in application of wearable technology for emotion recognition [J]. Journal of Textile Research, 2022, 43(08): 197-205. |
[13] | LI Ruikai, LI Ruichang, ZHU Lin, LIU Xiangyang. System of seven-lead electrocardiogram monitoring based on graphene fabric electrodes [J]. Journal of Textile Research, 2022, 43(07): 149-154. |
[14] | WANG Chengcheng, GONG Xiaodan, WANG Zhen, MA Qunwang, ZHANG Liping, FU Shaohai. Preparation of binary thermochromic microcapsules and application in smart textiles [J]. Journal of Textile Research, 2022, 43(05): 38-42. |
[15] | SUN Chunhong, DING Guangtai, FANG Kun. Cashmere and wool classification based on sparse dictionary learning [J]. Journal of Textile Research, 2022, 43(04): 28-32. |
|