Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (05): 35-42.doi: 10.13475/j.fzxb.20221105701

• Fiber Materials • Previous Articles     Next Articles

Preparation and thermal insulation properties of encapsulated polyacrylonitrile/SiO2 aerogel composite nanofibers

WANG Xinqing1, JI Dongsheng1, LI Shuchang1, YANG Chen1, ZHANG Zongyu1, LIU Shicheng2, WANG Hang1,3(), TIAN Mingwei1,4   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Jiangsu Baihoo Textiles Technology Co., Ltd., Suqian, Jiangsu 223800, China
    3. Shandong Province Special Nonwoven Materials Engineering Research Center, Qingdao University, Qingdao, Shandong 266071, China
    4. Smart Wearable Technology Research Center, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2022-11-21 Revised:2023-09-07 Online:2024-05-15 Published:2024-05-31

Abstract:

Objective Aerogel is a novel class of three-dimensional network solid materials, which are porous, high in thermal resistance, and low in volume density, and can be prepared by sol-gel method under the action of gaseous dispersion medium. Aerogels therefore have enormous application potential in the area of thermal insulators, energy conservation because they can effectively delay and block heat flow and reduce heat loss. However, low mechanical strength, high brittleness and easy breakage would hinder the actual aerogel applications. One-step forming of aerogel composite fiber can be achieved by using polymer solution and aerogel powder, and the synergistic improvement of thermal insulation/warmth retention performance can be further achieved by regulating the microstructure of monomer fiber and the macro structure of fiber assembly. However, there are few reports on this aspect.

Method In order to effectively integrate the functional and structural advantages of nano-aerogel and nanofiber, a new production technology was designed and developed to prepare polyacrylonitrile (PAN)/SiO2 aerogel composite nanofibers by one-step method using coaxially solution blowing process. In spinning process, the SiO2 aerogel and the PAN were served as core layer and skin layer respectively, at the speed of 2 mL/h and 12 mL/h. The influences of SiO2 aerogel content in composite fibers on fiber morphology, structure, stability, mechanical properties, and thermal insulation properties were specifically studied.

Results The PAN/SiO2 aerogel composite nanofibers prepared by coaxially solution blown spinning were continuous, uniform and loosely arranged, and the fiber diameter was distributed primarily in the range of 100-400 nm. Furthermore, three-dimensional crimps were shown in morphology and structure due to the disordered shearing effect of high-speed airflow during the fiber forming process. The introduction of SiO2 aerogel significantly affected the surface morphology of the fibers, forming a porous fold structure. PAN/SiO2 aerogel composite nanofibers were heated up in an oven at 180 ℃ for 240 min to evaluate their thermal stability. After heating, the fibers still retained their porous fold structure, showing good thermal stability. Moreover, the contents of micropores and mesoporous pores on the fiber surface were gradually increased with the increase of SiO2 aerogel content. The obtained PAN/SiO2 aerogel composite nanofibers demonstrated excellent thermal insulation, and the thermal conductivity of the sample with SiO2 aerogel mass concentration of 6 mg/mL was as low as 0.037 38 W/(m·K) at 40 ℃. Under the condition of 50 ℃, the surface temperature of the fiber tested by thermal infrared was 32.5 ℃, and under the condition of 65 ℃, the surface temperature of the fiber tested by thermal infrared was 37.5 ℃. In addition, the weighed PAN/SiO2 aerogel composite nanofibers had a low gram weight (about 70 g/m2), and felt soft and fluffy. Owing to its excellent thermal insulation and convenient and stable production process, PAN/SiO2 aerogel composite nanofibers indicate a broad future market in aspects of thermal insulation, field survival and industrial thermal insulation.

Conclusion This paper reported a new route of macro quantization preparation of aerogel composite nanofibers by "one-step method". Specifically, PAN/SiO2 aerogel composite nanofibers were prepared by solution blowing coaxial spinning technology using PAN and SiO2 aerogel particles. In conclusion, the prepared solution blown aerogel fiber has the advantages of low weight and flexible manufacture process, and the spinning efficiency can reach 8-12 times that of electrospinning. It can play a broad application prospect in the aspects of thermal insulation, industrial thermal insulation, and military thermal infrared shielding. In the future, an important development direction of aerogel fibers and their products is to utilize simple fiber processing technology to realize one-step integrated processing.

Key words: polyacrylonitrile, nanofiber, coaxially solution blowing process, aerogel composite fiber, SiO2 aerogel, thermal insulation material

CLC Number: 

  • TQ342.3

Fig.1

Diagram of spinning process"

Fig.2

Macro aggregate and surface micro scopic structures of encapsulated PAN/SiO2 aerogel nanofibers"

Fig.3

Cross-section micro structures of encapsulated PAN/SiO2 aerogel nanofibers"

Fig.4

Surface micro structure of encapsulated PAN/SiO2 aerogel nanofibers after high temperature heating"

Fig.5

Pore size distribution curves of encapsulated PAN/SiO2 aerogel nanofibers and PAN nanofibers"

Tab.1

Thermal insulation coefficient of encapsulated aerogel fibers"

样品编号 测试温度/℃ 导热系数/(W·m-1·K-1)
PAN/SiO2-1 40 0.042 72
80 0.046 37
PAN/SiO2-2 40 0.040 06
80 0.044 72
PAN/SiO2-3 40 0.037 38
80 0.039 15
PAN 40 0.055 49
80 0.059 74

Fig.6

Surface thermal infrared imaging of PAN/SiO2-3 and ordinary non-adhesive cotton sampless at different temperatures"

[1] LI Z, CHENG X, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 316-325.
[2] MENG S, ZHANG J, CHEN W, et al. Construction of continuous hollow silica aerogel fibers with hierarchical pores and excellent adsorption performance[J]. Microporous and Mesoporous Materials, 2019, 273: 294-296.
[3] LINHARES T, AMORIM M T, DURÃES L. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability, 2019, 7(4): 22282-22768.
[4] DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1-3): 10-26.
[5] 吴晓栋, 宋梓豪, 王伟, 等. 气凝胶材料的研究进展[J]. 南京工业大学学报(自然科学版), 2020, 42(4): 405-451.
WU Xiaodong, SONG Zihao, WANG Wei, et al. Advances of aerogels materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(4): 405-451.
[6] XIE J, NIU L, QIAO Y, et al. Impact energy absorption behavior of graphene aerogels prepared by different drying methods[J]. Materials and Design, 2022. DOI:10.1016/j.matdes.2022.110912.
[7] ZHENG MINGLIANG. The model and experiment for heat transfer characteristics of nanoporous silica aero-gel[J]. Korean Journal of Materials Research, 2020, 30(4): 155-159.
[8] ZIMMERMANN M V G, ZATTERA A J. Silica aerogel reinforced with cellulose nanofibers[J]. Journal of Porous Materials, 2021, 28(5): 1325-1333.
[9] 潘月磊, 张和平, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309.
doi: 10.16085/j.issn.1000-6613.2022-0512
PAN Yuelei, ZHANG Heping, YAN Mingyuan, et al. Silica aerogel and its application in the field of thermal insulation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309.
doi: 10.16085/j.issn.1000-6613.2022-0512
[10] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 5-12.
FAN Lingyuan, ZHANG Mei, GUO Min. Preparation and amino modification of silica aerogel and its low temperature adsorption of CO2: a review[J]. Materials Reports, 2022, 36(15): 5-12.
[11] 杨景锋, 王齐华, 王廷梅. 氧化铝气凝胶的合成与性能[J]. 无机材料学报, 2018, 33(3): 259-265.
doi: 10.15541/jim20170180
YANG Jingfeng, WANG Qihua, WANG Tingmei. Synthesis and property of alumina aerogel[J]. Journal of Inorganic Materials, 2018, 33(3): 259-265.
doi: 10.15541/jim20170180
[12] 温培刚, 巢雄宇, 袁武华, 等. 耐高温氧化铝气凝胶研究进展[J]. 材料导报, 2016, 30(15): 51-56.
WEN Peigang, CHAO Xiongyu, YUAN Wuhua, et al. Research progress in highly thermally stable alumina aerogels[J]. Materials Reports, 2016, 30(15): 51-56.
[13] YANG J, WANG Q, WANG T, et al. Facile one-step precursor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures[J]. Journal of Porous Materials, 2017, 24(4): 889-897.
[14] HOU X, ZHANG R, FANG D. An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia, 2018, 143: 113-116.
[15] 朱伟卓, 吴幼青, 吴诗勇, 等. 氧化锆掺杂铝硅复合气凝胶耐热性能研究[J]. 功能材料, 2022, 53(7): 7102-7108.
doi: 10.3969/j.issn.1001-9731.2022.07.013
ZHU Weizhuo, WU Youqing, WU Shiyong, et al. Study on heat resistance of aluminum-silicon composite aerogel doped with zirconia[J]. Jorunal of Functional Materials, 2022, 53(7): 7102-7108.
[16] LIU B, LIU X, ZHAO X, et al. High-strength, thermal-stable ZrO2 aerogel from polyacetylace-tonatozirconium[J]. Chemical Physics Letters, 2019, 715: 109-114.
[17] 祖国庆, 沈军, 王文琴, 等. 耐高温核/壳结构TiO2/SiO2复合气凝胶的制备及其光催化性能[J]. 物理化学学报, 2015, 31(2): 360-368.
ZU Guoqing, SHEN Jun, WANG Wenqin, et al. Preparation of heat-resistant, core/shell nanostructured TiO2/SiO2 composite aerogels and their photocatalytic properties[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 360-368.
[18] WANG H, ZHANG X, WANG N, et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges[J]. Science Advances, 2017. DOI:10.1126/sciadv.1603170.
[19] LUO J, WANG H. Preparation, thermal insulation and flame retardance of cellulose nanocrystal aerogel modified by TiO2[J]. International Journal of Heat and Technology, 2018, 36(2): 614-618.
[20] PATIL S P, SHENDYE P, MARKERT B. Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: insights from all-atom simulations[J]. Scripta Materialia, 2020, 177: 65-68.
[21] SUN W, FANG Y, WU L. Preparation and properties of down feather fibers reinforced cellulose composite aerogel[J]. Journal of Porous Materials, 2022. DOI:10.1007/s10934-022-01331-0.
[22] 高庆福, 张长瑞, 冯坚, 等. 氧化硅气凝胶隔热复合材料研究进展[J]. 材料科学与工程学报, 2009, 27(2): 302-306.
GAO Qingfu, ZHANG Changrui, FENG Jian, et al. Progress of silica aerogel insulation composites[J]. Journal of Materials Science and Engineering, 2009, 27(2): 302-306.
[23] MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74.
[24] 张训虎, 翟萍, 栾强, 等. 溶胶凝胶法制备SiO2气凝胶/石英纤维增强石英复合材料及其性能表征[J]. 硅酸盐通报, 2018, 37(1): 221-224.
ZHANG Xunhu, ZHAI Ping, LUAN Qiang, et al. Characterization of SiO2 aerogel/SiO2 fiber composites prepared by sol-gel method[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 221-224.
[25] 华媛. SiO2纳米纤维/纳米颗粒复合材料的制备及性能探究[D]. 上海: 东华大学, 2022:35-37.
HUA Yuan. Study on preparation and properties of silica nanofiber/ nanoparticle composites[D]. Shanghai: Donghua University, 2022:35-37.
[26] HIRANO S I, YOGO T, SAKAMOTO W, et al. In situ processing of nano crystalline oxide particles/polymer hybrid[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 35-41.
[27] SU L, WANG H J, NIU M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Science Advances, 2020.DOI:10.1126/sciadv.aay6689.
[28] 张欣欣. 弹性抗压ZrO2纳米纤维基气凝胶的构建及隔热性能研究[D]. 上海: 东华大学, 2022:37-39.
ZHANG Xinxin. Elastic and strong zirconia nanofibrous based aerogels: construction and thermal insulation application[D]. Shanghai: Donghua University, 2022:37-39.
[29] WANG W, ZHAO Y, YAN W, et al. Preparation of the novel B4C-SiC composite aerogel with high compressive strength and low thermal conductivity[J]. Journal of Porous Materials, 2021, 28(3): 703-710.
[30] GU H, HOU X, ZHANG R, et al. Novel high-temperature-resistant Y2SiO5 aerogel with ultralow thermal conductivity[J]. International Journal of Applied Ceramic Technology, 2019, 16(6): 2393-2397.
[31] ZHANG X, LIU C, ZHANG X, et al. Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation[J]. Journal of Materials Chemistry A, 2021, 9(48): 27415-27423.
[32] YANG M, LIXIA Y, CHEN Z, et al. Flexible electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation[J]. Ceramics International, 2022. DOI:10.1016/j.ceramint.2022.11.076.
[33] 王航, 庄旭品, 董锋, 等. 溶液喷射纺纳米纤维制备技术及其应用进展[J]. 纺织学报, 2018(7): 165-173.
WANG Hang, ZHUANG Xupin, DONG Feng, et al. Preparation technology and application progress of solution blown nanofibers[J]. Journal of Textile Research, 2018(7): 165-173.
[34] GAO Y, ZHANG J, SU Y, et al. Recent progress and challenges in solution blow spinning[J]. Materials Horizons, 2021, 8(2): 426-446.
doi: 10.1039/d0mh01096k pmid: 34821263
[35] 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其隔热复合材料研究[D]. 长沙: 国防科技大学, 2009:42-46.
GAO Qingfu. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009:42-46.
[36] 韦丽, 范金娟, 王云英, 等. SiO2气凝胶及纤维复合SiO2气凝胶隔热材料表征方法[J]. 失效分析与预防, 2016, 11(3): 196-202.
WEI Li, FAN Jinjuan, WANG Yunying, et al. Development situation of characterization methods of SiO2 aerogel and fiber composites SiO2 aerogel insula-tion[J]. Failure Analysis and Prevention, 2016, 11(3): 196-202.
[37] YU H, TONG Z, ZHANG B, et al. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.129342.
[38] ZHANG H, FENG J, LI L, et al. Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator[J]. RSC Advances, 2022, 12(22): 13783-13791.
doi: 10.1039/d2ra00276k pmid: 35541432
[39] 郝栋连, 冯慧, 苏悦, 等. 高温隔热材料的研究现状及发展趋势[J]. 合成纤维工业, 2022, 45(1): 68-73.
HAO Donglian, FENG Hui, SU Yue, et al. Research status and development trend of high temperature thermal insulation materials[J]. China Synthetic Fiber Industry, 2022, 45(1): 68-73.
[1] CHEN Jinmiao, LI Jiwei, CHEN Meng, NING Xin, CUI Aihua, WANG Na. Preparation and properties of chitosan micro-nanofiber composite antibacterial air filter material [J]. Journal of Textile Research, 2024, 45(05): 19-26.
[2] FENG Ying, YU Hanzhe, ZHANG Hong, LI Kexin, MA Biao, DONG Xin, ZHANG Jianwei. Review on preparation of electrospun chitosan-based nanofibers and their application in water treatment [J]. Journal of Textile Research, 2024, 45(05): 218-227.
[3] LI Zhikun, YU Ying, ZUO Yuxin, SHI Haoqin, JIN Yuzhen, CHEN Hongli. Analysis of flexoelectric effect of polyacrylonitrile/MoS2 composite film and its applications [J]. Journal of Textile Research, 2024, 45(05): 27-34.
[4] LIANG Wenjing, WU Junxian, HE Yin, LIU Hao. Preparation and performance of ion sensors based on composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(04): 15-23.
[5] LI Chaowei, CHENG Yue, SU Xin, CHEN Pengfei, LI Dawei, FU Yijun. Structural regulation and biomedical applications of polyvinylidene fluoride nanofibers [J]. Journal of Textile Research, 2024, 45(04): 229-237.
[6] SONG Beibei, ZHAO Haoyue, LI Xinyu, QU Zhan, FANG Jian. Application of MXene-loaded cobalt-nitrogen doped carbon nanofibers in lithium-sulfur batteries [J]. Journal of Textile Research, 2024, 45(04): 24-32.
[7] JIA Lin, DONG Xiao, WANG Xixian, ZHANG Haixia, QIN Xiaohong. Preparation and performance of polycaprolactone/MgO composite nanofibrous filter membrane [J]. Journal of Textile Research, 2024, 45(04): 59-66.
[8] LU Yaoyao, YE Juntao, RUAN Chengxiang, LOU Jin. Preparation and photocatalytic performance of titanium dioxide/porous carbon nanofibers composite material [J]. Journal of Textile Research, 2024, 45(04): 67-75.
[9] YANG Qi, DENG Nanping, CHENG Bowen, KANG Weimin. Preparation and application properties of dendritic sulfonated polyethersulfone fiber based composite solid electrolyte [J]. Journal of Textile Research, 2024, 45(03): 1-10.
[10] ZHAO Meiqi, CHEN Li, QIAN Xian, LI Xiaona, DU Xun. Preparation and performance of electrospun membrane for Cu(Ⅱ) detection [J]. Journal of Textile Research, 2024, 45(03): 11-18.
[11] RONG Chengbao, SUN Hui, YU Bin. Preparation and antibacterial performances of silver-copper bimetallic nanoparticles/polylactic acid composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(01): 48-55.
[12] WANG Peng, SHEN Jiakun, LU Yinhui, SHENG Hongmei, WANG Zongqian, LI Changlong. Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes [J]. Journal of Textile Research, 2023, 44(12): 10-16.
[13] LEI Caihong, YU Linshuang, JIN Wanhui, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/chitosan composite fiber membrane [J]. Journal of Textile Research, 2023, 44(11): 19-26.
[14] XU Zhihao, XU Danyao, LI Yan, WANG Lu. Research progress in nanofiber-based biosensors based on surface enhanced Raman spectroscopy [J]. Journal of Textile Research, 2023, 44(11): 216-224.
[15] WANG Xixian, GUO Tianguang, WANG Dengke, NIU Shuai, JIA Lin. Preparation and long-lasting performance of polyacrylonitrile/Ag composite nanofiber membrane for high efficiency filtration [J]. Journal of Textile Research, 2023, 44(11): 27-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!