Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (07): 223-229.doi: 10.13475/j.fzxb.20221204702

• Comprehensive Review • Previous Articles     Next Articles

Research progress in macrofungi and mycelia composites

YUAN Jiugang1(), WANG Yingxue1, ZHOU Aihui2, XU Jin1, TANG Ying1, FAN Xuerong1   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Fujian Province Fiber Inspection Center, Fuzhou, Fujian 350008, China
  • Received:2023-02-03 Revised:2023-08-07 Online:2024-07-15 Published:2024-07-15

Abstract:

Significance Fungi are neither plants nor animals, which are one of the first life forms on Earth. Fungi are widely distributed in nature, with millions of species. In recent years, with the improvement of people's awareness of environmental protection and the progress of cultivation technology, the application of fungi is also expanded. Fungi are rich in dextran and chitin, and have unique physical and chemical properties. Besides food and medicine, fungi are also widely used in material engineering. Fungal composite materials are a new type of environment-friendly material, which has the characteristics of simple production, complete degradation, durability and wide application scenarios which attracted much research interest. In order to promote the development of sustainable materials and advocate the concept of environmental protection, it is of great significance to review and summarize the current research status of fungi and mycelium composites.

Progress In order to better promote the development of fungal composites, this paper makes a comprehensive review of the current fungal materials covering the composition, fermentation mode and application status. The main structure, composition, active substances and application value of large fungi such as oyster mushroom, Flammulina mushroom and Ganoderma lucidum were first introduced respectively. In order to make the explanation clearer and more concise, some detailed data about fungi materials were collected. Fermentation methods also have a great influence on the properties of raw fungal materials. Fermentation products could have different thickness and density, requiring different processing routes. Therefore, the advantages and disadvantages of solid fermentation and liquid fermentation were compared and analyzed, and their effects on the processing properties of raw fungal materials were summarized. In addition, the research progress of pure mycelia materials and mycelium composites was comprehensively reviewed. At present, the research and development of fungal materials still show rapid growth. Mycelia composite materials have applications in sound insulation materials, building boards, packaging materials, textile leather and medical dressings, and so on. Fungal materials are rich in chitin, polysaccharide and other active ingredients, which provide unique material characteristics and medical value, and are expected to be further developed in the future to broaden applications. There are, however, problems in fungal materials, such as production pollution, pathogenicity, service life and future development direction, calling for further study. This paper makes an objective analysis and prospect of fungal materials, hoping to introduce the characteristics of fungal materials comprehensively and help researchers broaden their thinking.

Conclusion and Prospect Fungal materials, with good biocompatibility and no residue after degradation, have great potential to replace fossil-based materials, and their production is not limited by seasons. Particular problems to be solved have been identified as follows. 1) Conditions for fermentation needs to be optimized and suitable fermentation equipment needs to be devised to reduce pollution, as pollution and other problems increase the cost to a large extent. 2) Research on the service life of fungal materials is emperative. 3) The pathogenicity of the selected fungi materials and the possibility of insect colonization in fungi materials to become invasive species needs careful consideration. In a word, there is still a long way to go to use fungal composites on a large scale and the research and development of new fungal materials remain to be attractive.

Key words: fungus, mycelia, chitin, biomass, composite material

CLC Number: 

  • TS959.9

Tab.1

Chemical composition analysis of fungal cell wall"

类别 占比/% 参考
文献
葡聚
纤维
几丁
聚氨基
葡糖
甘露
聚糖
蛋白

壶菌纲 16 58 10 [12]
卵菌纲 54 36 0 10 <1 5 3 [12]
接合菌纲 0 0 9 33 2 6 8 [12]
子囊/半知菌门 43 0 19 2 11 5 [12]
酵母(子囊菌) 29 0 1 0 31 13 9 [13]
担子菌门 61 0 10 <3 7 3 [13]

Tab.2

Analysis of specific gravity of dry substance between fruiting body and mycelium"

种类 组成
结构
占比/% 参考
文献
灰分 总糖 粗蛋白 粗脂肪 粗纤维
平菇 菌丝体 2.58 0.87 18.07 3.25 15.83 [14]
子实体 5.79 2.10 25.46 2.13 13.58 [14]
金针菇 菌丝体 10.99 40.40 14.80 2.83 22.13 [15]
子实体 6.40 28.50 20.74 0.71 13.54 [15]
桑黄 菌丝体 7.00 33.08 36.46 13.35 [16]
子实体 6.40 17.47 5.48 9.52 [16]

Tab.3

Several typical macrofungi and their active components and functions"

种类 活性成分 作用
香菇 多糖、氨基酸、维生素(B1、B2、C、D)、膳食纤维 抗肿瘤、抗衰老、抗氧化、抗肝炎、免疫增强
平菇 多糖、多肽、氨基酸、酚类、萜类、甾醇、脂肪酸酯 抗炎、免疫调节、抗高胆固醇、抗高血压、抗糖尿病、抗肥胖、抗衰老、抗菌、抗氧化、保肝
金针菇 多糖、多肽、甾醇、麦角硫醚、铜芳烃倍半萜、地尔松、半胱氨酸 免疫调节、抑菌消炎、抗肿瘤、抗氧化、肝保护、抗高脂血症
桑黄 多糖、脂肪酸、氨基酸、黄酮、萜类化合物 免疫调节、抗肿瘤、消炎抗菌、降血糖、抗氧化
灵芝 多糖、三萜(主要是灵芝酸)、蛋白质、类固醇、甾醇、核苷酸、脂肪酸、维生素 免疫调节、抗癌、降糖、抗氧化、抗动脉粥样硬化、抗纤维化、镇痛、抗炎、抗菌、降血脂、保肝、抗性激素过剩、抗疱疹、抗关节炎、抗骨质疏松、抗衰老、抗溃疡

Tab.4

Fermentation methods of macrofungi"

项目 液态发酵法 固态发酵法
生产优势 生长速度快、成品厚度均匀、产物易与营养液分离 生长速度快、污染风险较低、成本较低、设施技术含量较低
生产劣势 污染风险高、成本较高 厚度不均匀、不易与底物分离
产物种类 菌丝体 菌丝体、子实体
成品形态 类纸状、类皮革状 类皮革状、泡沫状、砖板状
加工方向 类纸状材料、服装材料、医用材料 真菌皮革、隔音泡沫、缓冲包装、菌丝体复合生物质材料

Fig.1

Mycelia biocomposites"

Fig.2

Foam mycelia. (a) Solid matter for mycelia colonization; (b) Final product"

Fig.3

Fungal leather material. (a) Hat and handbag made by Amadou; (b) Fungal derived leather"

[19] YANG Yang, MA Shan, QIU Jiyao, et al. Analysis of polyphenol and amino acid content of Pleurotus ostreatus in different culture media[J]. Modern Food Science and Technology, 2022, 38(1): 271-281.
[20] CORREA R C G, BRUGNARI T, BRACHT A, et al. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (oyster mushroom) related with its chemical composition: a review on the past decade findings[J]. Trends in Food Science & Technology, 2016, 50: 103-117.
[21] 孙传博, 姜明, 张云野. 金针菇食用及药用价值概述[J]. 宁夏农林科技, 2015, 56(11): 80-82.
SUN Chuanbo, JIANG Ming, ZHANG Yunye. Overview of edible and medicinal value of Flammulina velutipes[J]. Ningxia Agriculture and Forestry Science and Technology, 2015, 56(11): 80-82.
[22] ZHANG Z, LV G, HE W, et al. Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes[J]. Carbohydrate Polymers, 2013, 98(2): 1524-1531.
[23] 曹红妹, 胡桂萍, 石旭平, 等. 药用真菌桑黄的研究进展[J]. 蚕业科学, 2019, 45(2): 285-292.
CAO Hongmei, HU Guiping, SHI Xuping, et al. Research progress of medicinal fungus Phellinus linteus[J]. Sericulture Science, 2019, 45(2): 285-292.
[24] 朱琳, 崔宝凯. 药用真菌桑黄的研究进展[J]. 菌物研究, 2016, 14(4): 201-209.
ZHU Lin, CUI Baokai. Research progress of medicinal fungus Phellinus igniarius[J]. Fungus Research, 2016, 14(4): 201-209.
[25] 刘艳玲, 刘朋虎, 李晶, 等. 不同栽培原料对灵芝生长及其子实体营养品质的影响[J]. 福建农业学报, 2022, 37(5): 609-616.
LIU Yanling, LIU Penghu, LI Jing, et al. Effects of different cultivation materials on the growth and nutritional quality of Ganoderma lucidum[J]. Journal of Fujian Agriculture, 2022, 37(5): 609-616.
[26] AHMAD M F. Ganoderma lucidum: persuasive biologically active constituents and their health endorsement[J]. Biomedicine & Pharmacotherapy, 2018, 107: 507-519.
[27] LU H, LOU H, HU J, et al. Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(5): 2333-2356.
doi: 10.1111/1541-4337.12602 pmid: 33336985
[28] 游明乐. 真菌功能性发酵制品研究创新途径[C]// 李晶, 王洪庆, 谢小梅, 等. 第九届全国药用真菌学术会议论文集. 北京: 万方数据知识服务平台, 2009: 381-385.
YOU Mingle. Innovative ways of research on fungal functional fermented products[C]// LIJing, WANGHongqing, XIEXiaomei, et al. Proceedings of the 9th National Conference on Medicinal Fungi. Beijing: Wanfang Data Knowledge Service Platform, 2009: 381-385.
[29] 王谦, 胡卫静. 大型食药用真菌深层发酵研究进展[J]. 食品安全质量检测学报, 2016, 7(3): 1240-1246.
WANG Qian, HU Weijing. Research progress of submerged fermentation of large edible and medicinal fungi[J]. Journal of Food Safety and Quality Inspection, 2016, 7(3): 1240-1246.
[30] MINGLE Y O U. The food Chinese (medicine)uses the fungus fermentation engineering research progress[J]. Microbiology, 2007, 34(2): 327-331.
[31] 廖雅鑫, 尤珈. 基于设计应用的菌丝体生物材料研究进展[J]. 北京服装学院学报(自然科学版), 2022, 42(2): 93-102.
LIAO Yaxin, YOU Jia. Research progress of mycelium biomaterials based on design and application[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2022, 42(2): 93-102.
[32] JONES M, MAUTNER A, LUENCO S, et al. Engineered mycelium composite construction materials from fungal biorefineries: a critical review[J]. Materials & Design, 2020. DOI: 10.1016/j.matdes.2019.108397.
[33] GANDIA A, VAN D, APPELS F, et al. Flexible fungal materials: shaping the future[J]. Trends in Biotechnology, 2021, 39(12): 1321-1331.
doi: 10.1016/j.tibtech.2021.03.002 pmid: 33812663
[1] 刘培贵, 王向华, 陈娟, 等. 高等大型真菌与人类[J]. 科学(上海), 2020, 72(2): 43-46.
LIU Peigui, WANG Xianghua, CHEN Juan, et al. Higher macrofungi and human[J]. Science (Shanghai), 2020, 72(2): 43-46.
[2] 中国食用菌协会[EB/OL].[2023-12-29]. https://mp.weixin.qq.com/s/CyznLJ4O9LhLdzFvJhJYjA.
China Edible Fungi Association[EB/OL].[2023-12-29]. https://mp.weixin.qq.com/s/CyznLJ4O9LhLdzFvJhJYjA.
[3] 栗成林, 毛娜, 郭恒, 等. 建国后大型真菌史研究综述[J]. 食用菌, 2021, 43(1): 79-82.
LI Chenglin, MAO Na, GUO Heng, et al. Review of the research on the history of macrofungi after the founding of the people's republic of China[J]. Edible Fungi, 2021, 43(1): 79-82.
[4] 熊春花, 向伽谊. 真菌,纺织材料的另一未来[J]. 中国纤检, 2018(12): 123-125.
XIONG Chunhua, XIANG Jiayi. Fungi, another future of textile materials[J]. China Fiber Inspection, 2018(12): 123-125.
[5] 方超林. 胶凝及土基建筑材料中的微生物方解石沉淀研究:简便易行、经济节约及真菌介导[D]. 上海: 华东师范大学, 2019:13-15.
FANG Chaolin. Study on microbial calcite precipitation in cementitious and soil-based building materials: simple, economical and fungus-mediated[D]. Shanghai: East China Normal University, 2019:13-15.
[6] HYDE K D, XU J, RAPIOR S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially[J]. Fungal Diversity, 2019, 97(1): 1-136.
[7] 佚名. 种出来的"蘑菇裙"[J]. 科学FANS, 2017(3): 44.
Anon. Grow a "mushroom skirt"[J]. Science FANS, 2017(3): 44.
[8] 杨昌梅, 张全福, 宋继昌. 新型伤处理材料:真菌菌丝[J]. 国外医学(生物医学工程分册), 1998(5): 42-45.
YANG Changmei, ZHANG Quanfu, SONG Jichang. A new wound treatment material:fungal hypha[J]. Foreign Medicine (Biomedical Engineering), 1998(5): 42-45.
[9] 宋林丽, 邢晓科, 郭顺星. 大型真菌子实体发生的形态学过程及调控机制[J]. 菌物学报, 2018, 37(6): 671-684.
doi: 10.13346/j.mycosystema.180030
SONG Linli, XING Xiaoke, GUO Shunxing. Morphological process and regulation mechanism of fruiting body of macrofungi[J]. Mycosystema, 2018, 37(6): 671-684.
doi: 10.13346/j.mycosystema.180030
[10] 朱兰宝, 周琳. 食用菌优质高产栽培技术问答[M]. 北京: 金盾出版社, 2010:23.
ZHU Lanbao, Joline. High-quality and high-yieldcultivation techniques of edible fungi[M]. Beijing: Jindun Publishing House, 2010:23.
[11] 冒慧颖. 番茄尖孢镰刀菌FolmiR1影响病原菌致病力的分子机制研究[D]. 扬州: 扬州大学, 2020:5-6.
MAO Huiying. Study on the molecular mechanism of Fusarium oxysporum FolmiR1 affecting the pathogenicity of the pathogen[D]. Yangzhou: Yangzhou University, 2020: 5-6.
[12] 张卓然, 张凤民, 夏梦岩. 微生物耐药的基础与临床[M]. 北京: 人民卫生出版社,2017:80-81.
[34] ATTIAS N, DANAI O, ABITBOL T, et al. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis[J]. Journal of Cleaner Production, 2020, 246: 1879-1786.
[35] SANTOS I S, NASCIMENTO B L, MARINO R H, et al. Influence of drying heat treatments on the mechanical behavior and physico-chemical properties of mycelial biocompo-site[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.108870.
[36] HANEEF M, CESERACCIU L, CANALE C, et al. Advanced materials from fungal mycelium: fabrication and tuning of physical properties[J]. Scientific Reports, 2017, 7:31-32.
[37] JIANG L, WALCZYK D, MCINTYRE G, et al. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation[J]. Journal of Cleaner Production, 2019, 207: 123-135.
[38] HE J, CHENG C M, SU D G, et al. Study on the mechanical properties of the latex-mycelium compo-site[J]. Applied Mechanics and Materials, 2014: 415-420.
[39] PELLETIER M G, HOLT G A, WANJURA J D, et al. An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products[J]. Industrial Crops and Products, 2017, 95: 342-347.
[40] 张凯. 香菇菌柄纤维的制备及成膜性研究[D]. 天津: 天津科技大学, 2019:10-12.
ZHANG Kai. Study on preparation and film-forming property of Lentinus edodes stalk fiber[D]. Tianjin: Tianjin University of Science and Technology, 2019:10-12.
[41] ABHIJITH R, ASHOK A, REJEESH C. Sustainable packaging applications from mycelium to substitute polystyrene: a review[J]. Materials Today: Proceedings, 2018, 5(1): 2139-2145.
[42] HOLT G A, MCINTYRE G, FLAGG D, et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts[J]. Journal of Biobased Materials and Bioenergy, 2012, 6(4): 431-439.
[43] PEGLER D. Useful fungi of the world: Amadou and Chaga[J]. Mycologist, 2001, 4(15): 153-154.
[12] ZHANG Zhuoran, ZHANG Fengmin, XIA Mengyan. Basis and clinic of microbial drug resistance[M]. Beijing: People's Medical Publishing House,2017:80-81.
[13] ALCAZAR F L, BAYRY J, AIMANIANDA V. Editorial: the role of the fungal cell wall in host-fungal interactions[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 392-401.
[14] 回晶, 李辉, 朱春玉, 等. 桑黄子实体与菌丝体营养成分的比较分析[J]. 特产研究, 2009, 31(2): 59-61.
HUI Jing, LI Hui, ZHU Chunyu, et al. Comparative analysis of nutritional components between fruiting body and mycelium of Phellinus igniarius[J]. Specialty Research, 2009, 31(2): 59-61.
[15] 饶毅萍, 陈洁辉, 张冰娜, 等. 平菇菌丝体与子实体营养成分的分析比较[J]. 生物学杂志, 2011, 28(3): 94-96.
RAO Yiping, CHEN Jiehui, ZHANG Bingna, et al. Analysis and comparison of nutritional components between mycelium and fruiting body of Pleurotus ostreatus[J]. Journal of Biology, 2011, 28(3): 94-96.
[16] 金周雨, 丁淼, 田超一, 等. 金针菇营养成分测定[J]. 现代食品, 2018, 11(21): 127-131.
JIU Zhouyu, DING Miao, TIAN Chaoyi, et al. Determination of nutritional components of Flammulina velutipes[J]. Modern Food, 2018, 11(21): 127-131.
[17] CHIHAHA G, HAMURO J, MAEDA Y Y, et al. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing.(an edible mushroom)[J]. Cancer Research, 1970, 30(11): 2776-2781.
[18] XU X, YAN H, TANG J, et al. Polysaccharides in Lentinus edodes: isolation, structure, immunomodulating activity and future prospective[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(4): 474-487.
[19] 杨洋, 马珊, 邱继尧, 等. 不同培养基的平菇多酚及氨基酸含量分析[J]. 现代食品科技, 2022, 38(1): 271-281.
[44] JONES M, GANDIA A, JOHN S, et al. Leather-like material biofabrication using fungi[J]. Nature Sustainability, 2021, 4(1): 9-16.
[45] BUSTILLOS J, LOGANATHAN A, AGRAWAL R, et al. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties[J]. ACS Applied Bio Materials, 2020, 3(5): 3145-3156.
doi: 10.1021/acsabm.0c00164 pmid: 35025358
[46] RAMAN J, KIM D S, KIM H S, et al. Mycofabrication of mycelium-based leather from brown-rot fungi[J]. Journal of Fungi, 2022, 8(3): 317.
[47] SU C H, SUN C S, JUAN S W, et al. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes[J]. Biomaterials, 1997, 18(17): 1169-1174.
pmid: 9259514
[48] JONES M, KUJUNDZIC M, JOHN S, et al. Crab vs mushroom: a review of crustacean and fungal chitin in wound treatment[J]. Marine Drugs, 2020, 18(1): 64.
[49] JONES M, WEILAND K, KUJUNDZIC M, et al. Sustainable mycelium-derived chitinous thin films[C]// WANG H. 22nd International Conference on Composite Materials (ICCM22). Melbourne:[s.n], 2019:17-18.
[50] CHIEN M Y, CHEN L C, CHEN Y C, et al. Mycelial mattress from a sporangia formation delayed mutant of rhizopus stolonifer as wound healing-enhancing biomaterial[J]. Plos One, 2015, 10(8):40-41.
[51] VAN D B, WOSTEN H A. Risk assessment of fungal materials[J]. Fungal Biology and Biotechnology, 2022, 9(1): 1-20.
[1] MA Liang, YU Xuhua, LIU Wenwu, LI Ci, FANG Yiqun, LI Jun, XU Jiajun. Application of aerogel composite materials in improving thermal insulation performance of dry diving suit inner liner [J]. Journal of Textile Research, 2024, 45(07): 181-188.
[2] LI Jiao, XIN Shiji, CHEN Li, CHEN Xiaoming. Design of double-station needling robot system [J]. Journal of Textile Research, 2024, 45(07): 204-212.
[3] GAO Zhihao, NING Xin, MING Jinfa. Research progress in biomass-based carbon aerogels in energy storage device [J]. Journal of Textile Research, 2024, 45(06): 210-218.
[4] HU Ziqiang, LUO Xiaolei, WEI Lulin, LIU Lin. Synergistic flame retardant finishing of polyester/cotton blended fabric with phytic acid/chitosan [J]. Journal of Textile Research, 2024, 45(04): 126-135.
[5] YANG Meihui, LI Bo, SHEN Yanqin, WU Hailiang. Sorption properties of regenerated keratin gels to size macromolecules in textile desizing wastewater [J]. Journal of Textile Research, 2024, 45(02): 142-152.
[6] LI Qiyang, JI Chengchang, CHI Xinfu, SUN Yize. Braiding strategy and yarn trajectory prediction of large size special-shaped structure mandrel [J]. Journal of Textile Research, 2023, 44(10): 188-195.
[7] SUN Mingtao, CHEN Chengyu, YAN Weixia, CAO Shanshan, HAN Keqing. Influence of needling reinforcement frequency on properties of jute/polylactic acid fiber composite sheets [J]. Journal of Textile Research, 2023, 44(09): 91-98.
[8] LÜ Junwei, LUO Longbo, LIU Xiangyang. Advances in design and fabrication of aramid fiber's surface and interface structure based on direct fluorination [J]. Journal of Textile Research, 2023, 44(06): 21-27.
[9] FENG Shuaibo, QIANG Rong, SHAO Yulong, YANG Xiao, MA Qian, CHEN Bowen, CHEN Yi, GAO Mingyang, CHEN Caihong. Microwave absorption performance of loofah sponge derived carbon fiber composites [J]. Journal of Textile Research, 2023, 44(02): 69-75.
[10] YING Zhiping, WANG Weiqing, WU Zhenyu, HU Xudong. Compression after impact performance of three-dimensional orthogonal woven composites [J]. Journal of Textile Research, 2023, 44(01): 129-135.
[11] ZHANG Yi, SHAO Lifeng, YANG Bin, GAO Jinxia, YU Chongwen. Acoustic properties of palm fiber felt/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hot-pressed composites [J]. Journal of Textile Research, 2022, 43(10): 24-30.
[12] FANG Zhouqian, MIAO Peiyuan, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Nondestructive testing on damage of carbon fiber composites using ultrasonic C-scanning [J]. Journal of Textile Research, 2022, 43(10): 71-76.
[13] YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites [J]. Journal of Textile Research, 2022, 43(08): 107-112.
[14] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[15] GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!