Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (06): 210-218.doi: 10.13475/j.fzxb.20221204802
• Comprehensive Review • Previous Articles Next Articles
GAO Zhihao1,2, NING Xin1,2,3, MING Jinfa1,2,3()
CLC Number:
[1] | SUN H Y, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560. |
[2] | LI Y, LIU X F, NIE X Y, et al. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201807624. |
[3] | 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(1): 1-8. |
LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy[J]. Journal of Textile Research, 2022, 43(1): 1-8. | |
[4] | PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. 1989, 24(9): 3221-3227. |
[5] | XU Y L, REN B, WANG S S, et al. Carbon aerogels with oxygen-containing surface groups for use in supercapacitors[J]. Solid State Ionics, 2019, 339: 1-7. |
[6] | SCHWAN M, RATKE L. Flexibilisation of resorcinol-formaldehyde aerogels[J]. Journal of Materials Chemistry A, 2013(43): 13462-13468. |
[7] | 杨喜, 刘杏娥, 马建锋, 等. 生物质基碳气凝胶制备及应用研究[J]. 材料导报, 2017, 31(7): 45-53. |
YANG Xi, LIU Xing'e, MA Jianfeng, et al. Fabrication and application of carbon aerogel derived from biomass materials[J]. Materials Reports, 2017, 31(7): 45-53. | |
[8] | SAM D K, SAM E K, DURAIRAJ A, et al. Synthesis of biomass-based carbon aerogels in energy and sustainability[J]. Carbohydrate Research, 2020. DOI: 10.1016/j.carres.2020.107986. |
[9] |
张洁, 段荣帅, 李子江, 等. 生物质基碳气凝胶的研究进展[J]. 生物质化学工程, 2021, 55(1): 91-99.
doi: 10.3969/j.issn.1673-5854.2021.01.013 |
ZHANG Jie, DUAN Rongshuai, LI Zijiang, et al. Research advances on biomass derived carbon aerogel[J]. Biomass Chemical Engineering, 2021, 55(1): 91-99.
doi: 10.3969/j.issn.1673-5854.2021.01.013 |
|
[10] |
DU H S, LIU W, ZHANG M M, et al. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications[J]. Carbohydrate Polymers, 2019, 209: 130-144.
doi: S0144-8617(19)30020-7 pmid: 30732792 |
[11] | WANG X Y, ZHANG Y, JIANG H, et al. Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology[J]. Materials Letters, 2016, 183: 179-182. |
[12] | ZHANG T, YUAN D S, GUO Q, et al. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green Tofu[J]. Food & Bioproducts Processing, 2019, 114: 154-162. |
[13] | WANG Z G, YOKOYAMA T, CHANG H M, et al. Dissolution of beech and spruce milled woods in LiCl/DMSO[J]. Journal of Agricultural & Food Chemistry, 2009, 57(14): 6167-6170. |
[14] |
LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters, 2014, 14(4): 2225-2229.
doi: 10.1021/nl500859p pmid: 24679142 |
[15] | SHAQSI A Z, SOPIAN K, HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306. |
[16] |
WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.
doi: 10.1039/c7cs00205j pmid: 28868557 |
[17] | CHENG P, LI T, YU H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. The Journal of Physical Chemistry C, 2016, 120(4): 2079-2086. |
[18] | YANG X, KONG L Y, CAO M, et al. Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application[J]. Industrial Crops and Products, 2020. DOI: 10.1016/j.indcrop.2020.112100. |
[19] | WANG T H, ZHANG W T, YANG S J, et al. Regenerated bamboo-derived cellulose fibers/RGO-based composite for high-performance supercapacitor electrodes[J]. Advances in Materials Science and Engineering, 2020. DOI: 10.1088/1757-899X/735/1/012027. |
[29] | XUE Q, SUN J F, HUANG Y, et al. Recent progress on flexible and wearable supercapacitors[J]. Small, 2017. DOI: 10.1002/smll.201701827. |
[30] | GAO Y F, ZHENG S H, FU H L, et al. Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-upercapacitors[J]. Carbon, 2020, 168: 701-709. |
[31] |
孔雪琳, 卢芸, 叶贵超, 等. 纳米纤维素基多层级孔道结构碳气凝胶的制备及在锂电池中的应用[J]. 高等学校化学学报, 2017, 38(11): 1941-1946.
doi: 10.7503/cjcu20170126 |
KONG Xuelin, LU Yun, YE Guichao, et al. Nanofibrillated cellulose derived hierarchical porous carbon aerogels: efficient nnode material for Lithium ion battery[J]. Chemical Journal of Chinese Universities, 2017, 38(11): 1941-1946.
doi: 10.7503/cjcu20170126 |
|
[32] | WANG L P, SCHUTZ C, SALAZAR-ALVAREZ G, et al. Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries[J]. Rsc Advances, 2014, 4(34): 17549-17554. |
[33] | CHE Y, ZHU X Y, LI J J, et al. Simple synthesis of MoO2/carbon aerogel anodes for high performance lithium ion batteries from seaweed biomass[J]. Rsc Advances, 2016, 6: 106230-106236. |
[34] | LI D H, WANG Y, SUN Y Y, et al. Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage[J]. Carbon, 2018, 137: 31-40. |
[35] | YE G C, ZHU X Y, CHEN S, et al. Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage[J]. Journal of Materials Chemistry A, 2017, 5: 8247-8254. |
[36] | KUBICKA M, BAKIERSKA M, CHUDZIK K, et al. Nitrogen-doped carbon aerogels derived from starch biomass with improved electrochemical properties for Li-ion batteries[J]. International Journal of Molecular Sciences, 2021. DOI: 10.3390/ijms22189918. |
[37] | ZHANG J L, ZHANG L J, YANG S L, et al. Facile strategy to produce N-doped carbon aerogels derived from seaweed for lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2017, 701: 256-261. |
[38] | LIU Y, CHEN J S, LIU Z K, et al. Necklace-like ferroferric oxide (Fe3O4) nanoparticle/carbon nanofibril aerogels with enhanced Lithium storage by carbonization of ferric alginate[J]. Journal of Colloid and Interface Science, 2020, 576: 119-126. |
[39] | HOU G Y, LYU Z Y, TANG Y P, et al. Preparation of flexible composite electrode with bacterial cellu-lose (BC)-derived carbon aerogel supported low loaded NiS for methanol electrocatalytic oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16049-16059. |
[40] | LIANG H W, WU Z Y, CHEN L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 11: 366-376. |
[41] | LI D H, CHANG G J, ZONG L, et al. From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage[J]. Energy Storage Materials, 2019, 17: 22-30. |
[42] | ZHU L, YOU L G, ZHU P H, et al. High performance Lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 248-257. |
[20] | ZHOU H M, ZHAN Y B, GUO F Q, et al. Synthesis of biomass-derived carbon aerogel/MnOx composite as electrode material for high-performance superca-pacitors[J]. Electrochimica Acta, 2021. DOI: 10.1016/j.electacta.2021.138817. |
[21] | DONG J X, LI S J, DING Y. Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2020. DOI: 10.1016/j.jallcom.2020.155701. |
[22] | WU X L, WEN T, GUO H L, et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors[J]. ACS Nano, 2013, 7(4): 3589-3597. |
[23] | 周亚丽, 雷西萍, 于婷, 等. 壳聚糖碳气凝胶原位负载Fe3O4的制备及其电化学性能[J]. 硅酸盐学报, 2021, 49(10): 2164-2171. |
ZHOU Yali, LEI Xiping, YU Ting, et al. Preparation and electrochemical properties of carbon aerogel in-situ loaded Fe3O4 based on chitosan[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2164-2171. | |
[24] | ZHAI Z Z, REN B, XU Y L, et al. Nitrogen self-doped carbon aerogels from chitin for supercapacitors[J]. Journal of Power Sources, 2021. DOI: 10.1016/j.jpowsour.2020.228976. |
[25] | YE Z Q, WANG F J, JIA C, et al. Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors[J]. Journal of Materials Science, 2018, 53(17): 12374-12387. |
[26] |
MENG F L, LI L, WU Z, et al. Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst[J]. Chinese Journal of Catalysis, 2014, 35(6): 877-883.
doi: 10.1016/S1872-2067(14)60126-1 |
[27] | XING W L, ZHANG M, LIANG J, et al. Facile synthesis of pinecone biomass-derived phosphorus-doping porous carbon electrodes for efficient electrochemical salt removal[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117357. |
[28] | KHALAFALLAH D, QUAN X Y, OUYANG C, et al. Heteroatoms doped porous carbon derived from waste potato peel for supercapacitors[J]. Renewable Energy, 2021, 170: 60-71. |
[1] | FAN Yangrui, QIAN Jianhua, XU Kaiyang, WANG Ao, TAO Zhenglong. Interfacial polymerization modification of chlorinated polyvinyl chloride/polyvinyl butyral blend membrane [J]. Journal of Textile Research, 2023, 44(07): 33-41. |
[2] | CHENG Yue, ZUO Han, AN Qi, LI Dawei, ZHANG Wei, FU Yijun. Holding force of non-absorbable barbed sutures and its influencing factors [J]. Journal of Textile Research, 2023, 44(06): 66-71. |
[3] | ZHANG Tianyun, SHI Xiaohong, ZHANG Le, WANG Fujuan, XIE Yi'na, YANG Liang, RAN Fen. Bacterial cellulose/polyacrylamide hydrogel polymer electrolyte with dual-crosslinked network based on ionic liquid synergistic method [J]. Journal of Textile Research, 2022, 43(11): 22-28. |
[4] | CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15. |
[5] | WANG Jin, HU Kairui, ZHANG Liufei, CHEN Lei. Application progress of fiber materials in flexible wearable zinc batteries [J]. Journal of Textile Research, 2022, 43(10): 192-199. |
[6] | LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184. |
[7] | REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83. |
[8] | XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83. |
[9] | XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43. |
[10] | BAI He, QIAN Xiaoming, FAN Jintu, QIAN Yao, LIU Yongsheng, WANG Xiaobo. Theoretical model for number of fiber contacts in fibrous porous materials [J]. Journal of Textile Research, 2019, 40(12): 21-26. |
[11] | XIAO Yuan, YIN Bo, LI Lanxin, LIU Huanhuan. Influence of process conditions on silver conductive lines by micro-droplet jet printing solution reaction [J]. Journal of Textile Research, 2019, 40(05): 78-83. |
[12] | . High-performance polyimide fiber and its weavability [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 14-19. |
[13] | . Simulation analysis of woven fabric electromagnetic shielding effectiveness using finite integration technique [J]. Journal of Textile Research, 2016, 37(2): 155-160. |
[14] | . Structure and physical properties of willow fibers [J]. Journal of Textile Research, 2016, 37(01): 23-27. |
[15] | . Study on propreties of regenerated cattle skin collagen fiber [J]. Journal of Textile Research, 2015, 36(04): 1-6. |
|