Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (09): 52-59.doi: 10.13475/j.fzxb.20230101201

• Fiber Materials • Previous Articles     Next Articles

Preparation and characterization of acetate grade reed pulp

WANG Xiaokang1,2, XIE Kaifang1,2(), ZHOU Hengshu1,2, BAO Xinjun1,2, XU Yingsheng3   

  1. 1. College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
    2. Engineering Technology Research Center of New Fiber Fabric and Processing, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
    3. Hunan Juntai New Material Technology Co., Ltd., Huaihua, Hunan 418005, China
  • Received:2023-01-05 Revised:2023-06-26 Online:2023-09-15 Published:2023-10-30

Abstract:

Objective Based on the research on using biomass materials (such as bamboo, straw, sorghum straw, mulberry straw, hemp, bagasse, olive, tobacco stem and so on) to prepare acetate grade dissolving pulp and downstream products, this paper proposes the use of rich reed resources in Dongting Lake area to explore the feasibility of preparing acetate reed pulp, and test and analyze the performance of the prepared pulp so as to establish understanding on the preparation of cellulose acetate and acetate fiber.

Method The typical sulfate method was adopted to prepare the Triarrhena lutarioriparia dissolving pulp. Firstly, the water pre-hydrolysis of Triarrhena lutarioriparia slices was carried out in an electrothermal high-pressure boiling pot (Fig. 2) with a liquor ratio of 1∶4. Then, the equipment was used for sulfate boiling (Fig. 3), where the main components of the boiling solution were NaOH and Na2S. Crude pulp was cleaned with a 45 μm polyester mesh bag and sieved with a sieve machine with a sieve gap of 0.25 mm. Finally, the D0EpD1 three-stage bleaching process (Tab. 2) was used for bleaching, and the bleaching agents were ClO2 and H2O2. The cellulose I content, whiteness, polymerization degree, pentosan content, ash content and iron content of the prepared triarrhena lutarioriparia dissolving pulp were tested, and the apparent morphology, infrared spectroscopy, Raman spectroscopy and X-ray diffraction were employed for analysis.

Results The yield of crude pulp after boiling was 46.31%. The three-stage bleaching process significantly improved the main performance indexes of Triarrhena lutarioriparia pulp. The content of cellulose I increased by 1.24% to 97.70%, the whiteness doubled to 91.42%, and the intrinsic viscosity decreased by 38.01%, which made the average degree of polymerization of pulp reach 1 413. In addition, the pentosan content, ash content and iron content of the pulp after bleaching were 5.76%, 0.004% and 0.000 562%, respectively. The cellulose fibers prepared from Triarrhena lutarioriparia dissolving pulp were long cylindrical with rough surface showing a large number of grooves, cracks, pores and filaments. In the infrared spectra (Fig. 5), the Triarrhena lutarioriparia dissolving pulp showed a typical cellulose characteristic peak, and the intensity of the absorption peak was enhanced compared with that of Triarrhena lutarioriparia. The characteristic peaks of lignin at 1 254 cm-1 and 1 511 cm-1 and the characteristic peaks of hemicellulose at 1 726 cm-1 disappeared, indicating that the pulping process removed the lignin and hemicellulose in Triarrhena lutarioriparia. The characteristic peaks at 1 169 cm-1 and 1 607 cm-1 relating to lignin disappeared, and the intensity of the characteristic peak at 2 896 cm-1 decreased indicating that non-cellulose substances such as lignin in Triarrhena lutarioriparia were removed during pulping (Fig. 6). The Triarrhena lutarioriparia dissolving pulp showed a typical diffraction curve of cellulose I. The small peak at 26.4°disappeared and no peak appeared at 29.4°(Fig. 7), suggesting that the inorganic components such as SiO2 in Triarrhena lutarioriparia were effectively removed after the pulping process.

Conclusion The acetate grade Triarrhena lutarioriparia dissolving pulp was prepared by water pre-hydrolysis-sulfate cooking-D0EpD1 three-stage bleaching process. The combined action of high temperature and chemical agents during the pulping process effectively removed the lignin, hemicellulose and ash in Triarrhena lutarioriparia, formed irregular microfibril structure on the surface of cellulose fiber, and presented a rough surface full of grooves. The successful preparation of acetate grade Triarrhena lutarioriparia dissolving pulp not only lays a foundation for the preparation of cellulose acetate and acetate fiber, but also helps open up a new way for high-value and efficient utilization of reed resources.

Key words: reed, Triarrhena lutarioriparia, acetate fiber, dissolving pulp, cellulose, lignin, hemicellulose

CLC Number: 

  • TS151

Fig. 1

Vertical and horizontal morphology of Triarrhena lutarioriparia and preparation process of dissolving pulp"

Fig. 2

Prehydrolysis process of Triarrhena lutarioriparia"

Fig. 3

Sulfate boiling process of Triarrhena lutarioriparia"

Tab. 1

Bleaching process parameters of Triarrhena lutarioriparia pulp"

漂白
工艺
漂白剂
种类
漂白剂用量/
(kg·t-1)
漂白
温度/℃
漂白
时间/min
D0 ClO2 15 70 25
EP H2O2 8 90 90
D1 ClO2 5 70 120

Fig. 4

Morphologies of inner and outer surface, section and dissolving pulp of Triarrhena lutarioriparia. (a) Outer surface of Triarrhena lutarioriparia (×800 ); (b) Cross section of Triarrhena lutarioriparia (×1 000 ); (c) Longitudinal section of Triarrhena lutarioriparia; (d) Dissolving pulp of Triarrhena lutarioriparia"

Fig. 5

Infrared spectra of Triarrhena lutarioriparia and dissolving pulp"

Fig. 6

Raman spectra of Triarrhena lutarioriparia and dissolving pulp"

Fig. 7

X-ray diffraction curves of Triarrhena lutarioriparia and dissolving pulp"

[1] 万献军. 南洞庭湖区芦苇综合利用研究浅探[J]. 农业技术与装备, 2019, 356(8): 87-88.
WAN Xianjun. Study on the comprehensive utilization of reeds in the South Dongting Lake area[J]. Agricultural Technology & Equipment, 2019, 356(8): 87-88.
[2] 刘敏. 加快洞庭湖区产业综合开发利用的思考:以芦苇产业为例[J]. 长江技术经济, 2019, 3(3): 42-46.
LIU Min. Thoughts on accelerating the comprehensive development and utilization of industry in Dongting Lake area:taking the reed industry as an example[J]. Technology and Economy of Changjiang, 2019, 3(3): 42-46.
[3] 陈玲, 尹子康, 雒鹰, 等. 一种芦苇秸秆板的研究[J]. 林业机械与木工设备, 2020, 48(3): 28-31.
CHEN Ling, YIN Zikang, LUO Ying, et al. Study on reed straw board[J]. Forestry Machinery & Woodworking Equipment, 2020, 48(3): 28-31.
[4] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能[J]. 环境化学, 2020, 39(8): 2196-2205.
SONG Zefeng, SHI Xiaoqian, LIU Zhuo, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisp-henol A (BPA)[J]. Environmental Chemistry, 2020, 39(8): 2196-2205.
[5] 钟国能, 黎亮, 姚心培, 等. 仿真丝二醋酸针织面料的设计开发[J]. 针织工业, 2021(9): 35-38.
ZHONG Guoneng, LI Liang, YAO Xinpei, et al. Design and development of silk imitated diacetate knitted fabric[J]. Knitting Industries, 2021 (9): 35-38.
[6] 李勇, 周兰阳, 方斌, 等. Lyocell纤维用溶解浆的来源和制备概述[J]. 纤维素科学与技术, 2022, 30(4): 1-10.
LI Yong, ZHOU Lanyang, FANG Bin, et al. Introduction to source and preparation of dissolving pulp for Lyocell fiber[J]. Journal of Cellulose Science and Technology, 2022, 30(4): 1-10.
[7] 梁荷叶, 吴海波, 张建超, 等. 烟用二醋酸纤维非织造材料卷烟滤棒的研制[J]. 产业用纺织品, 2020, 38(11): 5-10.
LIANG Heye, WU Haibo, ZHANG Jianchao, et al. Development of cigarette filter rod fors diacetate non-woven material[J]. Technical Textiles, 2020, 38(11): 5-10.
[8] 章伟, 何建新, 李克兢, 等. 竹浆粕的预水解与硫酸盐蒸煮工艺[J]. 纺织学报, 2009, 30(10): 31-36.
ZHANG Wei, HE Jianxin, LI Kejing, et al. Prehydrolysis and sulfated cooking processes of bamboo dissolving pulps[J]. Journal of Textile Research, 2009, 30(10): 31-36.
[9] SAKA S, MATSUMURA H. Wood pulp manufacturing and quality characteristics[J]. Macromolecular Symposia, 2004, 208(1): 37-48.
doi: 10.1002/masy.v208:1
[10] 马晓龙, 乐保祥, 沈琳, 等. 国产棉浆粕的性能表征及制备二醋酸纤维素的研究[J]. 纤维素科学与技术, 2010, 18(3): 13-20.
MA Xiaolong, LE Baoxiang, SHEN Lin, et al. Characterization of properties of domestic cotton linters pulp and its acetylation behavior[J]. Journal of Cellulose Science and Technology, 2010, 18(3): 13-20.
[11] 季柳炎. 2021年溶解浆市场回顾与2022年展望[J]. 造纸信息, 2022(2): 46-53.
JI Liuyan. Dissolving pulp market review in 2021 and outlook for 2022[J]. China Paper Newsletters, 2022(2): 46-53.
[12] 何建新. 高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研究[D]. 上海: 东华大学, 2007:16-28.
HE Jianxin. Preparation of high-grade bamboo dissolving pulp and its application for the synthesis of cellulose acetate[D]. Shanghai: Donghua University, 2007:16-28.
[13] 张建兴, 陈洪章. 秸秆醋酸纤维素的制备[J]. 化工学报, 2007, 58(10): 134-139.
ZHANG Jianxing, CHEN Hongzhang. Preparation of cellulose acetate from crop straw[J]. CIESC Journal, 2007, 58(10): 134-139.
[14] ANDRADE ALVES J A, LISBOA Dos Santos M D, MORAIS C C, et al. Sorghum straw: pulping and bleaching process optimization and synthesis of cellulose acetate[J]. International Journal of Biological Macromolecules, 2019, 135: 877-886.
doi: S0141-8130(19)32540-1 pmid: 31152840
[15] 王可, 马倩, 王乔逸. 利用桑树秸秆制备醋酸纤维素的研究[J]. 上海纺织科技, 2018, 46(10): 33-35.
WANG Ke, MA Qian, WANG Qiaoyi. Preparation of cellulose acetate form mulberry straw[J]. Shanghai Textile Science & Technology, 2018, 46(10): 33-35.
[16] LIU Zhaotie, FAN Xiushan, WU Jin, et al. A green route to prepare cellulose acetate particle from ramie fiber[J]. Reactive & Functional Polymers, 2007, 67(2): 104-112.
[17] CERQUEIRA D A, FILHO G R, MEIRELES C S. Optimization of sugarcane bagasse cellulose acetylation[J]. Carbohydrate Polymers, 2007, 69(3): 579-582.
doi: 10.1016/j.carbpol.2007.01.010
[18] HAMED O A, JODEH S, AL-HAJJ N, et al. Cellulose acetate from biomass waste of olive industry[J]. Journal of Wood Science, 2015, 61(1): 45-52.
doi: 10.1007/s10086-014-1442-y
[19] 吴佳骏, 覃小红. 烟梗浆亚微米醋酸纤维的制备及其性能[J]. 纺织学报, 2019, 40(12): 1-8.
WU Jiajun, QIN Xiaohong. Preparation and characterization of cellulose acetate sub-micro fiber from burley tobacco stalk pulp[J]. Journal of Textile Research, 2019, 40(12): 1-8.
doi: 10.1177/004051757004000101
[20] SEGAL L, CREELY J J, MARTION A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
doi: 10.1177/004051755902901003
[21] MUNIZ F T L, MIRANDA M A R, MORILLA Dos Santos C, et al. The Scherrer equation and the dynamical theory of X-ray diffraction[J]. Acta Crystallogr A, 2016, 72(3): 385-390.
doi: 10.1107/S205327331600365X
[22] MONSHI A, FOROUGHI M R, MONSHI M R. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD[J]. World Journal of Nano Science and Engineering, 2012, 2(3): 154-160.
doi: 10.4236/wjnse.2012.23020
[23] 赵双双, 田中建, 陈嘉川, 等. 碱浸渍对芦苇茎秆微观结构及其机械浆性能的影响[J]. 中国造纸, 2021, 40(3): 20-26.
ZHAO Shuangshuang, TIAN Zhongjian, CHEN Jiachuan, et al. Effect of alkali impregnation on microstructure and mechanical pulp properties of reed stem[J]. China Pulp & Paper, 2021, 40(3): 20-26.
[24] 辛民岳, 梁列峰. 超声波辅助酸碱法提取芦苇纤维素的研究[J]. 武汉纺织大学学报, 2019, 32(6): 8-14.
XIN Minyue, LIANG Liefeng. Study on ultrasonic assisted acid and alkaline treatment extraction of cellulose from reed[J]. Journal of Wuhan Textile University, 2019, 32(6): 8-14.
[25] 张文龙, 赵文龙, 戴亚杰. 芦苇浆粕预处理方法对其微晶纤维素特性的影响[J]. 哈尔滨理工大学学报, 2015, 20(3): 72-77.
ZHANG Wenlong, ZHAO Wenlong, DAI Yajie. The effect of methods to pretreat reed pulp on the characteristics of microcrystalline cellulose[J]. Journal of Harbin University of Science and Technology, 2015, 20(3): 72-77.
[26] ANDREEVA O A, BURKOVA L A, GREBENKIN A N, et al. IR spectroscopic study of prepurified flax[J]. Russian Journal of Applied Chemistry, 2002, 75(9): 1513-1516.
doi: 10.1023/A:1022266004482
[27] 杨占平, 曹建华, 马晓龙, 等. 醋化级竹浆粕的制备及醋化性能[J]. 高分子材料科学与工程, 2009, 25(7): 152-154,158.
YANG Zhanping, CAO Jianhua, MA Xiaolong, et al. Acetylation property of dissolving pulp prepared from bamboo[J]. Polymer Materials Science & Engineering, 2009, 25(7): 152-154,158.
[28] 马静, 马建锋, 张逊, 等. 拉曼光谱在植物细胞壁研究中的进展[J]. 光谱学与光谱分析, 2013, 33(5): 1239-1243.
pmid: 23905327
MA Jing, MA Jianfeng, ZHANG Xun, et al. Application of the Raman spectroscopy to the study of plant cell walls[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1239-1243.
pmid: 23905327
[29] JI Zhe, MA Jianfeng, XU Feng. Multi-scale visualization of dynamic changes in poplar cell walls during alkali pretreatment[J]. Microscopy and Microanalysis, 2014, 20(2): 566-576.
doi: 10.1017/S1431927614000063 pmid: 24548595
[30] HAN Yinli, SHAO Nisun, CHEN Zhouwang, et al. Structural and dynamic changes of lignin in Eucalyptus cell walls during successive alkaline ethanol treat-ments[J]. Industrial Crops and Products, 2015, 74(15): 200-208.
doi: 10.1016/j.indcrop.2015.04.048
[31] 冯龙, 孙存举, 毕文思, 等. 毛竹薄壁细胞组分分布及取向显微成像研究[J]. 光谱学与光谱分析, 2020, 40(9): 2957-2961.
FENG Long, SUN Cunjü, BI Wensi, et al. The distribution and orientation of cell wall components of moso bamboo parenchyma[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2957-2961.
[32] 金克霞, 王坤, 崔贺帅, 等. 拉曼光谱在木质素研究中的应用进展[J]. 林业科学, 2018, 54(3): 144-151.
JIN Kexia, WANG Kun, CUI Heshuai, et al. Application of Raman spectroscopy to the research on lignin[J]. Scientia Silvae Sinicae, 2018, 54(3): 144-151.
[33] KANBAYASHI T, MIYAFUJI H. Raman microscopic analysis of wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride[J]. Holzforschung, 2015, 69(3): 273-279.
doi: 10.1515/hf-2014-0060
[34] MATEU B P, BOCK P, GIERLINGER N. Raman imaging of plant cell walls[J]. Methods in Molecular Biology, 2020, 2149: 251-295.
doi: 10.1007/978-1-0716-0621-6_15 pmid: 32617940
[35] RONCERO M B, TORRES A L, COLOM J F, et al. TCF bleaching of wheat straw pulp using ozone and xylanase: part A: paper quality assessment[J]. Bioresource Technology, 2003, 87(3): 305-314.
doi: 10.1016/S0960-8524(02)00224-9
[36] 刘文. 醋化级溶解浆制备及其理化性能的分析表征[D]. 北京: 北京林业大学, 2014:111-112.
LIU Wen. Preparation, analysis and characterization of acetate grade dissolving pulps[D]. Beijing: Beijing Forestry University, 2014:111-112.
[37] 何建新, 章伟, 王善元. 竹纤维的结构分析[J]. 纺织学报, 2008, 29(2): 20-24.
HE Jianxin, ZHANG Wei, WANG Shanyuan. Analyzing the structure of bamboo fiber[J]. Journal of Textile Research, 2008, 29(2): 20-24.
[38] YAKUNIN N A, ZAVADSKII A E. Effect of dampening on the supramolecular structure of cotton cellulose[J]. Fiber Chemistry, 2004, 36(6): 463-466.
doi: 10.1007/s10692-005-0038-0
[39] 印霞, 何建新, 于伟东. 竹浆纤维与几种浆粕纤维形态及结构的比较[J]. 纺织学报, 2008, 29(10): 17-20.
YIN Xia, HE Jianxin, YU Weidong. Comparison of the morphology and structure between bamboo fiber and several kinds of pulp fibers[J]. Journal of Textile Research, 2008, 29(10): 17-20.
[1] SHAO Yanzheng, SUN Jianghao, WEI Chunyan, LÜ Lihua. Preparation and properties of adsorption fiber made from cotton stalk bark microcrystalline cellulose/modified chitosan [J]. Journal of Textile Research, 2023, 44(08): 18-25.
[2] ZHOU Tang, WANG Dengbing, ZHAO Lei, LIU Zuyi, FENG Quan. Preparation of bacterial cellulose/Au film loaded with tungsten trioxide and its catalytic performance [J]. Journal of Textile Research, 2023, 44(04): 16-23.
[3] LI Yu, FU Jiajia, CAVACO-PAULO Artur, WANG Hongbo, GAO Weidong. Structural changes and effects of bacterial community in bamboo retting [J]. Journal of Textile Research, 2023, 44(03): 96-103.
[4] PU Haihong, HE Pengxin, SONG Baiqing, ZHAO Dingying, LI Xinfeng, ZHANG Tianyi, MA Jianhua. Preparation of cellulose/carbon nanotube composite fiber and its functional applications [J]. Journal of Textile Research, 2023, 44(01): 79-86.
[5] QIAO Xiran, FANG Kuanjun, LIU Xiuming, GONG Jixian, ZHANG Shuai, ZHANG Min. Different influence of hydroxyethyl methyl cellulose pretreatment on surface properties of cotton and polyamide [J]. Journal of Textile Research, 2022, 43(11): 127-132.
[6] ZHANG Tianyun, SHI Xiaohong, ZHANG Le, WANG Fujuan, XIE Yi'na, YANG Liang, RAN Fen. Bacterial cellulose/polyacrylamide hydrogel polymer electrolyte with dual-crosslinked network based on ionic liquid synergistic method [J]. Journal of Textile Research, 2022, 43(11): 22-28.
[7] ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8.
[8] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[9] LI Xingxing, LI Qin, YUE Tiantian, LIU Yuqing. Progress in microfluidics preparation technology of micro/nano cellulose materials [J]. Journal of Textile Research, 2022, 43(04): 180-186.
[10] KONG Weiqing, HU Shufeng, YU Senlong, ZHOU Zhe, ZHU Meifang. Research progress of lignocellulosic multifunctional materials [J]. Journal of Textile Research, 2022, 43(04): 1-9.
[11] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[12] JIN Yaofeng, LIU Leigen, WANG Wei, LU Xin. Preparation and UV shielding of rutile nano-TiO2 by induction of nanocrystal-cellulose at room temperature [J]. Journal of Textile Research, 2022, 43(02): 176-182.
[13] WU Jiayin, WANG Hanchen, HUANG Biao, LU Qilin. Fabrication of fluorescent cellulose nanocrystals hydrogels for chloride ion response [J]. Journal of Textile Research, 2022, 43(02): 44-52.
[14] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
[15] LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!