Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (07): 240-247.doi: 10.13475/j.fzxb.20230103002
• Comprehensive Review • Previous Articles Next Articles
SHI Chu1, LI Jun1,2(), WANG Yunyi1,2
CLC Number:
[1] | 张会峰, 许樟荣, 冉兴无. 糖尿病足的相关定义和标准[J]. 中华糖尿病杂志, 2020, 12(6): 363-368. |
ZHANG Huifeng, XU Zhangrong, RANG Xingwu. Definition and standards of diabetic foot[J]. Chinese Journal of Diabetes Mellitus, 2020, 12(6): 363-368. | |
[2] | 中华医学会糖尿病学分会,中华医学会感染病学分会, 中华医学会组织修复与再生分会. 中国糖尿病足防治指南(2019版)(Ⅴ)[J]. 中华糖尿病杂志, 2019, 11(6): 92-108. |
Chinese Diabetes Society,Chinese Society of Infectious Diseases, Chinese Society for Tissue Repair and Regeneration. Chinese guideline on prevention and management of diabetic foot (2019 edition)(V)[J]. Chinese Journal of Diabetes Mellitus, 2019, 11(6): 92-108. | |
[3] | 李欣仪, 罗文静, 赵楠, 等. 糖尿病患者合并足部皮肤问题现状及其影响因素[J]. 解放军护理杂志, 2020, 37(10): 5-9. |
LI Xinyi, LUO Wenjing, ZHAO Nan, et al. The status quo and influence factors of foot skin problems among patients with diabetes[J]. Nursing Journal of Chinese People's Liberation Army, 2020, 37(10): 5-9. | |
[4] | 罗颖琪, 李炳辉, 许樟荣, 等. 国际糖尿病足工作组:糖尿病足溃疡预防指南——《国际糖尿病足工作组:糖尿病足防治国际指南(2019)》的一部分[J]. 感染、炎症、修复, 2019, 20(3): 140-157. |
LUO Yingqi, LI Binghui, XU Zhangrong, et al. International working group on the diabetic foot guideline on the prevention of foot ulcers in persons with diabetes: part of the 2019 IWGDF guidelines on the prevention and management of diabetic foot disease[J]. Infection,Inflammation,Repair, 2019, 20(3): 140-157. | |
[5] | 李欣仪, 周秋红, 赵楠, 等. 糖尿病患者足部风险筛查现状及影响因素研究[J]. 护理学杂志, 2021, 36(9): 33-36. |
LI Xinyi, ZHOU Qiuhong, ZHAO Nan, et al. Foot risk screening and its influencing factors among patients with diabetes[J]. Journal of Nursing Science, 2021, 36(9): 33-36. | |
[6] | MONTEIRO-SOARES M, BOYKO E J, RIBEIRO J, et al. Predictive factors for diabetic foot ulceration: a systematic review: predictive factors for diabetic foot ulceration[J]. Diabetes/Metabolism Research and Reviews, 2012, 28(7): 574-600. |
[7] |
HAYASHI A, SHICHIRI M. Use of noncontact infrared skin thermometer for peripheral arterial disease screening in patients with and without diabetes[J]. Angiology, 2020, 71(7): 650-657.
doi: 10.1177/0003319720920162 pmid: 32319312 |
[8] | NETTEN J J, RASPOVIC A, LAVERY L A, et al. Prevention of foot ulcers in the at-risk patient with diabetes: a systematic review[J]. Diabetes/Metabolism Research and Reviews, 2020. DOI:10.1002/dmrr.2701. |
[9] |
HOUGHTON V J, BOWER V M, CHANT D C. Is an increase in skin temperature predictive of neuropathic foot ulceration in people with diabetes? a systematic review and meta-analysis[J]. Journal of Foot and Ankle Research, 2013, 6(1): 31.
doi: 10.1186/1757-1146-6-31 pmid: 23919736 |
[10] | 黄悦, 汪清, 陈丹, 等. 足部皮肤温度与糖尿病足溃疡风险相关性的meta分析[J]. 实用预防医学, 2022, 29(9): 1059-1063. |
HUANG Yue, WANG Qing, CHEN Dan, et al. Meta-analysis on correlation between foot skin temperature and the risk of diabetic foot ulcers[J]. Practical Preventive Medicine, 2022, 29(9): 1059-1063. | |
[11] | MOULAEI K, MALEK M, SHEIKHTAHERI A. A smart wearable device for monitoring and self-management of diabetic foot: a proof of concept study[J]. International Journal of Medical Informatics, 2021. DOI: 10.1016/j.ijmedinf.2020.104343. |
[12] |
NOVICE T, VEMURI C, GILBERT C, et al. Do patients with diabetes mellitus want wearable technology to prevent diabetic foot ulcers?[J]. Journal of Diabetes Science and Technology, 2019, 13(4): 799-800.
doi: 10.1177/1932296819851776 pmid: 31113260 |
[13] |
MACDONALD E M, PERRIN B M, KINGSLEY M I C. Factors influencing Australian podiatrists' behavioural intentions to adopt a smart insole into clinical practice: a mixed methods study[J]. Journal of Foot and Ankle Research, 2020, 13(1): 28.
doi: 10.1186/s13047-020-00396-x pmid: 32487234 |
[14] |
CHAN A W, MACFARLANE I A, BOWSHER D R. Contact thermography of painful diabetic neuropathic foot[J]. Diabetes Care, 1991, 14(10): 918-922.
pmid: 1773693 |
[15] | SUN P C, JAO S H E, CHENG C K. Assessing foot temperature using infrared thermography[J]. Foot & Ankle International, 2005, 26(10): 847-853. |
[16] | ASTASIO-PICADO A, ESCAMILLA MARTÍNEZ E, MARTÍNEZ NOVA A, et al. Thermal map of the diabetic foot using infrared thermography[J]. Infrared Physics & Technology, 2018, 93: 59-62. |
[17] |
BAGAVATHIAPPAN S, PHILIP J, JAYAKUMAR T, et al. Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique[J]. Journal of Diabetes Science and Technology, 2010, 4(6): 1386-1392.
doi: 10.1177/193229681000400613 pmid: 21129334 |
[18] |
GATT A, CASSAR K, FALZON O, et al. The identification of higher forefoot temperatures associated with peripheral arterial disease in type 2 diabetes mellitus as detected by thermography[J]. Primary Care Diabetes, 2018, 12(4): 312-318.
doi: S1751-9918(18)30002-0 pmid: 29396205 |
[19] |
YAVUZ M, ERSEN A, HARTOS J, et al. Temperature as a causative factor in diabetic foot ulcers: a call to revisit ulceration pathomechanics[J]. Journal of the American Podiatric Medical Association, 2019, 109(5): 345-350.
doi: 10.7547/17-131 pmid: 30427732 |
[20] | HERNANDEZ-CONTRERAS D A, PEREGRINA-BARRETO H, RANGEL-MAGDALENO J de J, et al. Plantar thermogram database for the study of diabetic foot complications[J]. IEEE Access, 2019, 7: 161296-161307. |
[21] | HERNANDEZ-CONTRERAS D, PEREGRINA-BARRETO H, RANGEL-MAGDALENO J, et al. Narrative review: diabetic foot and infrared thermography[J]. Infrared Physics & Technology, 2016, 78: 105-117. |
[22] |
VAN NETTEN J J, VAN BAAL J G, LIU C, et al. Infrared thermal imaging for automated detection of diabetic foot complications[J]. Journal of Diabetes Science and Technology, 2013, 7(5): 1122-1129.
doi: 10.1177/193229681300700504 pmid: 24124937 |
[23] | VAN NETTEN J J, PRIJS M, VAN BAAL J G, et al. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications[J]. Diabetes Technology & Therapeutics, 2014, 16(11): 714-721. |
[24] | ARMSTRONG D G, HOLTZ-NEIDERER K, WENDEL C, et al. Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients[J]. The American Journal of Medicine, 2007, 120(12): 1042-1046. |
[25] | WIJLENS A M, HOLLOWAY S, BUS S A, et al. An explorative study on the validity of various definitions of a 2.2 ℃ temperature threshold as warning signal for impending diabetic foot ulceration: Exploring the validity of various definitions of a 2.2 ℃ temperature threshold[J]. International Wound Journal, 2017, 14(6): 1346-1351. |
[26] | MING A, WALTER I, ALHAJJAR A, et al. Study protocol for a randomized controlled trial to test for preventive effects of diabetic foot ulceration by telemedicine that includes sensor-equipped insoles combined with photo documentation[J]. Trials, 2019, 20(1): 521. |
[27] |
FRYKBERG R G, GORDON I L, REYZELMAN A M, et al. Feasibility and efficacy of a smart mat technology to predict development of diabetic plantar ulcers[J]. Diabetes Care, 2017, 40(7): 973-980.
doi: 10.2337/dc16-2294 pmid: 28465454 |
[28] | GATT A, FALZON O, CASSAR K, et al. Establishing differences in thermographic patterns between the various complications in diabetic foot disease[J]. International Journal of Endocrinology, 2018. DOI: 10.1155/2018/ 9808295. |
[29] | LAVERY L A, PETERSEN B J, LINDERS D R, et al. Unilateral remote temperature monitoring to predict future ulceration for the diabetic foot in remission[J]. BMJ Open Diabetes Research and Care, 2019, 7(1): e000696. |
[30] | NIEMANN U, SPILIOPOULOU M, MALANOWSKI J, et al. Plantar temperatures in stance position: a comparative study with healthy volunteers and diabetes patients diagnosed with sensoric neuropathy[J]. EBioMedicine, 2020.DOI: /10.1016/j.ebiom.2020.102712. |
[31] | BEACH C, COOPER G, WEIGHTMAN A, et al. Monitoring of dynamic plantar foot temperatures in diabetes with personalised 3D-printed wearables[J]. Sensors, 2021, 21(5): 1717. |
[32] | REDDY P N, COOPER G, WEIGHTMAN A, et al. Walking cadence affects rate of plantar foot temperature change but not final temperature in younger and older adults[J]. Gait & Posture, 2017, 52: 272-279. |
[33] | REDDY P N, COOPER G, WEIGHTMAN A, et al. An in-shoe temperature measurement system for studying diabetic foot ulceration etiology: preliminary results with healthy participants[J]. Procedia CIRP, 2016, 49: 153-156. |
[34] |
YAVUZ M, BREM R W, DAVIS B L, et al. Temperature as a predictive tool for plantar triaxial loading[J]. Journal of Biomechanics, 2014, 47(15): 3767-3770.
doi: 10.1016/j.jbiomech.2014.09.028 pmid: 25446272 |
[35] | REYZELMAN A M, KOELEWYN K, MURPHY M, et al. Continuous temperature-monitoring socks for home use in patients with diabetes: observational study[J]. Journal of Medical Internet Research, 2018. DOI: 10.2196/12460. |
[36] |
NAJAFI B, MOHSENI H, GREWAL G S, et al. An optical-fiber-based smart textile (smart socks) to manage biomechanical risk factors associated with diabetic foot amputation[J]. Journal of Diabetes Science and Technology, 2017, 11(4): 668-677.
doi: 10.1177/1932296817709022 pmid: 28513212 |
[37] | TORREBLANCA GONZÁLEZ J, GÓMEZ-MARTÍN B, HERNÁNDEZ ENCINAS A, et al. The use of infrared thermography to develop and assess a wearable sock and monitor foot temperature in diabetic subjects[J]. Sensors, 2021, 21(5): 1821. |
[38] | 李肖悦. 基于糖尿病足溃疡的智能监测袜设计与性能分析[D]. 杭州: 浙江理工大学, 2022:42-66. |
LI Xiaoyue. Design and performance analysis of intelligent monitoring socks based on diabetic foot ulcers[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:42-66. | |
[39] | DE PASCALI C, FRANCIOSO L, GIAMPETRUZZI L, et al. Modeling, fabrication and integration of wearable smart sensors in a monitoring platform for diabetic patients[J]. Sensors, 2021, 21(5): 1847. |
[40] | RESCIO G, LEONE A, FRANCIOSO L, et al. Fully integrated smart insole for diabetic foot[C]// LEONE A, CAROPPOA, RESCIOG, et al. Ambient Assisted Living. Cham: Springer International Publishing, 2019: 221-228. |
[41] | MURILLO F L, LEIJA L, VERA A. A foot temperature measuring system for diabetic patients[C]// 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Campeche Mexico: IEEE, 2014:1-4. |
[42] | NAJAFI B, REEVES N D, ARMSTRONG D G. Leveraging smart technologies to improve the management of diabetic foot ulcers and extend ulcer‐free days in remission[J]. Diabetes-Metabolism Research and Reviews, 2020.DOI: 10.1002/dmrr.3239. |
[43] | YANO T, OKAMOTO Y, HIRO M, et al. Relationship between skin temperature and skin blood flow in the fingers of healthy adults during cold vasodilation[J]. Journal of the Autonomic Nervous System, 1995, 1(56): 536-541. |
[44] | COATES J, CHIPPERFIELD A, CLOUGH G. Wearable multimodal skin sensing for the diabetic foot[J]. Electronics, 2016, 5(4): 45-58. |
[45] | 谭哲煜, 赵楠, 戴薇薇, 等. 糖尿病足溃疡预防的未来:从分级医疗向个体化医疗的模式转变[J]. 中华糖尿病杂志, 2021, 13(5): 457-461. |
TAN Zheyu, ZHAO Nan, DAI Weiwei, et al. The future of diabetic foot ulcer prevention: the shift from hierarchical medical care to individualized medical care[J]. Chinese Journal of Diabetes, 2021, 13(5): 457-461. | |
[46] | GOLLEDGE J, FERNANDO M, LAZZARINI P, et al. The potential role of sensors, wearables and telehealth in the remote management of diabetes-related foot disease[J]. Sensors, 2020. DOI:10.3390/s20164527. |
[1] | DING Xiaodie, TANG Hong, GAO Qiang, ZHANG Chengjiao. Cold and hot changes in upper torso skin temperature and division of heat regulation zones [J]. Journal of Textile Research, 2024, 45(05): 147-154. |
[2] | WANG Nan, SUN Hui, YU Bin, XU Lei, ZHU Xiangxiang. Preparation and sensing performances of flexible temperature sensor prepared from melt-blown nonwoven materials [J]. Journal of Textile Research, 2024, 45(05): 138-146. |
[3] | KE Ying, LIN Lei, ZHENG Qing, WANG Hongfu. Influence of heating area distribution of electrical heating clothing on human thermal comfort [J]. Journal of Textile Research, 2024, 45(04): 188-194. |
[4] | CHENG Ziqi, LU Yehu, XU Jingxian. Heat transfer simulation and parametric design of electric heating textile system [J]. Journal of Textile Research, 2024, 45(02): 206-213. |
[5] | LIU Guangju, SU Yun, TIAN Miao, LI Jun. Two-dimensional transient heat transfer model for electrically heated shoe upper and experimental validation [J]. Journal of Textile Research, 2023, 44(10): 127-133. |
[6] | DU Jihui, SU Yun, LIU Guangju, TIAN Miao, LI Jun. Research and design of temperature-control intelligent thermal gloves with wearing comfort [J]. Journal of Textile Research, 2023, 44(04): 172-178. |
[7] | CHEN Ying, SONG Zetao, ZHENG Xiaohui, JIANG Yan, CHANG Suqin. Study on cooling performance of evaporative cooling garment [J]. Journal of Textile Research, 2022, 43(11): 141-147. |
[8] | ZHANG Zhaohua, CHEN Zhirui, LI Luyao, XIAO Ping, PENG Haoran, ZHANG Yuhan. Airflow sensitivity of local human skin and its influencing factors [J]. Journal of Textile Research, 2021, 42(12): 125-130. |
[9] | NIU Mengyu, PAN Shuwen, DAI Hongqin, LÜ Kaimin. Relationship between thermal-moist comfort of medical protective clothing and human fatigue [J]. Journal of Textile Research, 2021, 42(07): 144-150. |
[10] | HUANG Qianqian, LI Jun. Research progress on mechanism of human thermal sensation under ambient temperature step change [J]. Journal of Textile Research, 2020, 41(04): 188-194. |
[11] | ZHENG Qing, WANG Hongfu, KE Ying, LI Shuang. Design and evaluation of cooling clothing by phase change materials for miners [J]. Journal of Textile Research, 2020, 41(03): 124-129. |
[12] | . Influence of clothing adopting ventilation system on thermal comfort [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 94-97. |
[13] | WANG Yun-Yi, ZHAO Meng-Meng. Objective evaluation on thermal adjusting effect of PCM cooling vest under high temperature and strong radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 101-105. |
|