Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (07): 213-222.doi: 10.13475/j.fzxb.20230203702
• Comprehensive Review • Previous Articles Next Articles
DONG Yalin, WANG Liming(), QIN Xiaohong
CLC Number:
[1] | CUI G, DONG Y, LI B, et al. A novel heterogeneous Fenton photocatalyst prepared using waste wool fiber combined with Fe3+ ions for dye degradation[J]. Fibers and Polymers, 2017, 18: 713-719. |
[2] | KYERE V N, GREVE K, ATIEMO S M, et al. Contamination and health risk assessment of exposure to heavy metals in soils from informal e-waste recycling site in Ghana[J]. Emerging Science Journal, 2018, 2(6): 428-436. |
[3] | SUN Y, LI B, ZHANG Y, et al. The progress and prospect for sustainable development of waste wool resources[J]. Textile Research Journal, 2022, 93(1-2): 468-485. |
[4] | SHAVANDI A, SILVA T H, BEKHIT A A, et al. Keratin: dissolution, extraction and biomedical application[J]. Biomater Sci, 2017, 5(9): 1699-1735. |
[5] | SU C, GONG J S, QIN J, et al. Glutathione enables full utilization of wool wastes for keratin production and wastewater decolorization[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.122092. |
[6] | NEPAL D, KANG S, ADSTEDT K M, et al. Hierarchically structured bioinspired nano-composites[J]. Nat Mater, 2023, 22(1): 18-35. |
[7] | CERA L, GONZALEZ G M, LIU Q, et al. A bioinspired and hierarchically structured shape-memory material[J]. Nat Mater, 2021, 20(2): 242-9. |
[8] | QUARTINELLO F, VECCHIATO S, WEINBERGER S, et al. Highly selective enzymatic recovery of building blocks from wool-cotton-polyester textile waste blends[J]. Polymers, 2018. DOI: 10.3390/polym10101107. |
[9] | 金雨婷, 胡馨予, 石国庆, 等. 羊毛蛋白组学研究进展[J]. 中国细胞生物学学报, 2020, 42(7): 1276-1287. |
JIN Yuting, HU Xinyu, SHI Guoqing, et al. Advance in the research of wool proteomics[J]. Chinese Journal of Cell Biology, 2020, 42(7): 1276-1287. | |
[10] | CLARK M. Handbook of textile and industrial dyeing: principles, processes and types of dyes[M]. Cambridge: Woodhead Pubiling Liminted. Elsevier, 2011:51-53. |
[11] | MCKITTRICK J, CHEN P Y, BODDE S, et al. The structure, functions, and mechanical properties of keratin[J]. JOM, 2012, 64(4): 449-468. |
[12] | LAZARUS B S, CHADHA C, VELASCO-HOGAN A, et al. Engineering with keratin: a functional material and a source of bioinspiration[J]. iScience, 2021. DOI: 10.1016/j.isci.2021.102798. |
[13] | 王志诚, 王昊, 肖璇, 等. 角蛋白提取工艺及在环保材料领域应用研究现状分析[J]. 山东化工, 2022, 51(16): 82-3,8. |
WANG Zhicheng, WANG Hao, XIAO Xuan, et al. Analysis of keratin extraction technology and its application in the field of environmental protection materials[J]. Shandong Chemical Industry, 2022, 51(16): 82-3,8. | |
[14] | FEUGHELMAN M. A two-phase structure for keratin fibers[J]. Textile Research Journal, 1959, 29(3): 223-228. |
[15] | CHILAKAMARRY C R, MAHMOOD S, SAFFE S, et al. Extraction and application of keratin from natural resources: a review[J]. 3 Biotech, 2021, 11(5): 1-12. |
[16] | KREPLAK L, DOUCET J, DUMAS P, et al. New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers[J]. Biophysical Journal, 2004, 87(1): 640-647. |
[17] | WANG B, YANG W, MCKITTRICK J, et al. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration[J]. Progress in Materials Science, 2016, 76: 229-318. |
[18] | FRASER R D B, MACRAE T P. The mechanical properties of biological materials[M]. London: Society for Experimental Biology, 1980: 211-246. |
[19] | 朱锦, 马宁, 邵元龙. 再生羊毛角蛋白纤维的制备及力学增强设计[J]. 功能材料与器件学报, 2021, 27(5): 371-382. |
ZHU Jin, MA Ning, SHAO Yuanlong. Preparation and reinforcing design of regenerated wool keratin fiber[J]. Journal of Functional Materials and Devices, 2021, 27(5): 371-382. | |
[20] | XIAO X, HU J, GUI X, et al. Is biopolymer hair a multi-responsive smart material[J]. Polymer Chemistry, 2017, 8(1): 283-294. |
[21] | MENEFEE E. Charge separation associated with dipole disordering in proteins[J]. Annals of the New York Academy of Sciences, 1974, 238(1): 53-67. |
[22] | 李子晗, 赵超, 王闻宇, 等. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 205-212. |
LI Zihan, ZHAO Chao, WANG Wenyu, et al. Research progress of protein piezoelectric materials[J]. Materials Reports, 2022, 36(11): 205-212. | |
[23] | MORI H, HARA M. Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel[J]. Materials Science and Engineering: C, 2018, 91: 19-25. |
[24] | ZHANG H, WANG K, GAO T, et al. Controlled release of bFGF loaded into electrospun core-shell fibrous membranes for use in guided tissue regen-eration[J]. Biomedical Materials, 2020. DOI: 10.1088/1748-605X/ab7979. |
[25] | YIFANG S, HUANG L, WANG X, et al. Intelligent drug delivery system based on silk fibroin/wool keratin[J]. Mathematical Problems in Engineering, 2022. DOI: 10.1155/2022/6748645. |
[26] | HUMPHRIES J D, BYRON A, HUMPHRIES M J. Integrin ligands at a glance[J]. Journal of Cell Science, 2006, 119(19): 3901-3903. |
[27] | RAJABI M, ALI A, MCCONNELL M, et al. Keratinous materials: structures and functions in biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2020. DOI: 10.1016/j.msec.2019.110612. |
[28] | XU H, YANG Y. Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1404-1410. |
[29] | OKORO O V, JAFARI H, HOBBI P, et al. Enhanced keratin extraction from wool waste using a deep eutectic solvent[J]. Chemical Papers, 2022, 76(5): 2637-2648. |
[30] | XIE H, LI S, ZHANG S. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J]. Green Chemistry, 2005, 7(8): 606-608. |
[31] | ZHAO W, YANG R, ZHANG Y, et al. Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion[J]. Green Chemistry, 2012, 14(12): 3352-3360. |
[32] | ZHANG Y, ZHAO W, YANG R. Steam flash explosion assisted dissolution of keratin from feathers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2036-2042. |
[33] | LI X, GUO Z, LI J, et al. Swelling and microwave-assisted hydrolysis of animal keratin in ionic liquids[J]. Journal of Molecular Liquids, 2021. DOI: 10.1016/j.molliq.2021.117306. |
[34] | DU W, ZHANG L, ZHANG C, et al. Green and highly efficient wool keratin extraction by microwave induction method[J]. Frontiers in Materials, 2022. DOI: 10.3389/fmats.2021.789081. |
[35] | XU H, MA Z, YANG Y. Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin[J]. Journal of Materials Science, 2014, 49(21): 7513-7521. |
[36] |
KATOH K, TANABE T, YAMAUCHI K. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity[J]. Biomaterials, 2004, 25(18): 4255-4262.
pmid: 15046915 |
[37] |
MI X, LI W, XU H, et al. Transferring feather wastes to ductile keratin filaments towards a sustainable poultry industry[J]. Waste Management, 2020, 115: 65-73.
doi: S0956-053X(20)30388-3 pmid: 32731135 |
[38] | MATTIELLO S, GUZZINI A, DEL GIUDICE A, et al. Physico-chemical characterization of keratin from wool and chicken feathers extracted using refined chemical methods[J]. Polymers, 2022. DOI: 10.3390/polym15010181. |
[39] | THOMPSON E, O'DONNELL I. Studies on reduced wool I: the extent of reduotion of wool with inoreasing conoentrations of thiol, and the extraotion of proteins from reduoed and alkylated wool[J]. Australian Journal of Biological Sciences, 1962, 15(4): 757-768. |
[40] | FEROZ S, MUHAMMAD N, DIAS G, et al. Extraction of keratin from sheep wool fibres using aqueous ionic liquids assisted probe sonication technology[J]. Journal of Molecular Liquids, 2022. DOI: 10.1016/j.molliq.2022.118595. |
[41] | DEB-CHOUDHURY S, PLOWMAN J E, HARLAND D P. Isolation and analysis of keratins and keratin-associated proteins from hair and wool[J]. Methods Enzymol, 2016, 568: 279-301. |
[42] | ZHANG Z, NIE Y, ZHANG Q, et al. Quantitative change in disulfide bonds and microstructure variation of regenerated wool keratin from various ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2614-2622. |
[43] | JI Y, CHEN J, LÜ J, et al. Extraction of keratin with ionic liquids from poultry feather[J]. Separation and Purification Technology, 2014, 132: 577-83. |
[44] | SU C, GONG J S, YE J P, et al. Enzymatic extraction of bio-active and self-assembling wool keratin for biomedical applications[J]. Macromolecular Bioscience, 2020. DOI: 10.1002/mabi.202000073. |
[45] |
POOLE A J, CHURCH J S, HUSON M G. Environmentally sustainable fibers from regenerated protein[J]. Biomacromolecules, 2009, 10(1): 1-8.
doi: 10.1021/bm8010648 pmid: 19035767 |
[46] | XU H, MA Z, YANG Y. Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin[J]. Journal of Materials Science, 2014, 49: 7513-7521. |
[47] | ZHU J, MA N, LI S, et al. Reinforced wool keratin fibers via dithiol chain re-bonding[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202213644. |
[48] | LI Y B, LIU H H, WANG X C, et al. Fabrication and performance of wool keratin-functionalized graphene oxide composite fibers[J]. Materials Today Sustainability, 2019. DOI: 10.1016/j.mtsust.2019.100006. |
[49] | CARINGELLA R, BHAVSAR P, DALLA FONTANA G, et al. Fabrication and properties of keratoses/sericin blend films[J]. Polymer Bulletin, 2022, 79(4): 2189-2204. |
[50] | FERNáNDEZ-D'ARLAS B. Tough and functional cross-linked bioplastics from sheep wool keratin[J]. Scientific Reports, 2019, 9(1): 1-12. |
[51] | CATALDI P, CONDURACHE O, SPIRITO D, et al. Keratin-graphene nanocomposite: transformation of waste wool in electronic devices[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12544-12551. |
[52] | LI Y B, LIU H H, WANG X C, et al. Fabrication and performance of wool keratin-functionalized graphene oxide composite fibers[J]. Materials Today Sustainability, 2019. DOI: 10.1016/j.mtsust.2019.100006. |
[53] | ZHANG L, HU F, ZHU S, et al. Meso-reconstruction of wool keratin 3D 'molecular springs' for tunable ultra-sensitive and highly recovery strain sensors[J]. Small, 2020. DOI: 10.1002/smll.202000128. |
[54] | HUANG H, DONG Z, REN X, et al. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications[J]. Nano Research, 2023(16): 3475-3515. |
[55] | 汤燕伟, 于伟东. 羊毛溶液和角蛋白膜的实用制备技术与基本问题[J]. 膜科学与技术, 2007(2): 80-84. |
TANG Yanwei, YU Weidong. Practical preparation techniques and basic problems of wool solution and keratin membrane[J]. Menbrane Science and Technology, 2007(2): 80-84. | |
[56] | 郑顺姬, 曹向禹, 隋智慧. 角蛋白膜的制备及应用研究进展[J]. 化工新型材料, 2021, 49(4): 251-256. |
ZHENG Shunji, CAO Xiangyu, SUI Zhihui. Research progress of preparation and application of keratin film[J]. New Chemical Materials, 2021, 49(4): 251-256. | |
[57] |
LINNES M P, RATNER B D, GIACHELLI C M. A fibrinogen-based precision microporous scaffold for tissue engineering[J]. Biomaterials, 2007, 28(35): 5298-5306.
pmid: 17765302 |
[58] | LEE C H, YUN Y J, CHO H, et al. Environment-friendly, durable, electro-conductive, and highly transparent heaters based on silver nanowire functionalized keratin nanofiber textiles[J]. Journal of Materials Chemistry C, 2018, 6(29): 7847-7854. |
[59] | ZHANG W, LIU X, LIN Y, et al. Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor[J]. Chinese Physics B, 2022. DOI: 10.1088/1674-1056/ac3ca9. |
[60] | PATIL A B, MENG Z, WU R, et al. Tailoring the meso-structure of gold nanoparticles in keratin-based activated carbon toward high-performance flexible sensor[J]. Nanomicro Lett, 2020. DOI: 10.1007/s40820-020-00459-5. |
[61] | HAMMOUCHE H, ACHOUR H, MAKHLOUF S, et al. A comparative study of capacitive humidity sensor based on keratin film, keratin/graphene oxide, and keratin/carbon fibers[J]. Sensors and Actuators A: Physical, 2021. DOI: 10.1016/j.sna.2021.112805. |
[62] | SHAO Y, ZHAO J, HU W, et al. Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn-ion batteries[J]. Small, 2022. DOI: 10.1002/smll.202107163. |
[63] | FEROZ S, MUHAMMAD N, RATNAYAKE J, et al. Keratin-based materials for biomedical applic-ations[J]. Bioactive Materials, 2020, 5(3): 496-509. |
[64] |
BORDELEAU F, BESSARD J, SHENG Y, et al. Keratin contribution to cellular mechanical stress response at focal adhesions as assayed by laser tweezers[J]. Biochemistry and Cell Biology, 2008, 86(4): 352-359.
doi: 10.1139/o08-076 pmid: 18756330 |
[65] |
SIERPINSKI P, GARRETT J, MA J, et al. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves[J]. Biomaterials, 2008, 29(1): 118-128.
pmid: 17919720 |
[66] | SANCHEZ RAMIREZ D O, CRUZ-MAYA I, VINEIS C, et al. Design of asymmetric nanofibers-membranes based on polyvinyl alcohol and wool-keratin for wound healing applications[J]. J Funct Biomater, 2021. DOI: 10.3390/jfb12040076. |
[67] | ZHU S, ZENG W, MENG Z, et al. Using wool keratin as a basic resist material to fabricate precise protein patterns[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201900870. |
[68] | TISSERA N D, WIJESENA R N, YASASRI H, et al. Fibrous keratin protein bio micro structure for efficient removal of hazardous dye waste from water: surface charge mediated interfaces for multiple adsorption desorption cycles[J]. Materials Chemistry and Physics, 2020. DOI: 10.1016/j.matchemphys.2020.122790. |
[69] | ALUIGI A, CORBELLINI A, ROMBALDONI F, et al. Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solu-tions[J]. Textile Research Journal, 2013, 83(15): 1574-1586. |
[1] | ZHANG Suya, CUI Rongrong, WANG Zhicheng, JIANG Wenqin, XU Pinghua. Parametric and regeneration design of Badayun patterns [J]. Journal of Textile Research, 2024, 45(06): 165-172. |
[2] | YANG Meihui, LI Bo, SHEN Yanqin, WU Hailiang. Sorption properties of regenerated keratin gels to size macromolecules in textile desizing wastewater [J]. Journal of Textile Research, 2024, 45(02): 142-152. |
[3] | XIANG Yu, ZHOU Aihui, WANG Sixiang, JI Qiao, WEN Xinke, YUAN Jiugang. Analysis of disulfide bonds and conformational content of wool based on Raman spectroscopy [J]. Journal of Textile Research, 2024, 45(02): 45-51. |
[4] | JIA Bingfan, AO Limin, TANG Wen, ZHENG Yuansheng, SHANG Shanshan. Processing of wool yarn/polyamide filament covered yarns and their properties and applications [J]. Journal of Textile Research, 2023, 44(12): 58-66. |
[5] | BU Fan, YING Lili, LI Changlong, WANG Zongqian. Dissolution behavior and mechanism of down in lactic acid/cysteine deep eutectic solvent [J]. Journal of Textile Research, 2023, 44(10): 24-30. |
[6] | LIANG Zhijie, LUO Zhengzhi, CHENG Haibing, JIA Weini, MAO Qinghui. Oxidation of caffeic acid and in-situ dyeing performance of wool fabrics catalyzed by polyoxovanadate [J]. Journal of Textile Research, 2023, 44(10): 98-103. |
[7] | TAN Qifei, CHEN Mengying, MA Shengsheng, SUN Mingxiang, DAI Chunpeng, LUO Lunting, CHEN Yiren. Preparation and properties of nonwoven flame retardant sound-absorbing material from Hu sheep wool [J]. Journal of Textile Research, 2023, 44(05): 147-154. |
[8] | JIA Weini, WANG Tao, BAO Jie, LIANG Zhijie, WANG Haifeng. Bioremediation dyeing of keratin hair fibers with dopamine hydrochloride catalyzed by laccase [J]. Journal of Textile Research, 2023, 44(04): 108-114. |
[9] | SHI Jingjing, YANG Enlong. Analysis of structure and properties of cotton/wool siro segment colored yarns [J]. Journal of Textile Research, 2023, 44(03): 55-59. |
[10] | JIANG Yang, CUI Biao, SHAN Chuanlei, LIU Yin, ZHANG Yanhong, XU Changhai. Color gamut expansion and color prediction of natural dye-dyed wool fibers [J]. Journal of Textile Research, 2023, 44(02): 199-206. |
[11] | XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106. |
[12] | ZHAO Xin, WANG Caixia, ZHOU Xiaopi, DING Xuemei. Study on sensory evaluation of performance of washed wool sweaters based on ridge regression method [J]. Journal of Textile Research, 2022, 43(07): 155-161. |
[13] | CHEN Long, ZHOU Zhe, ZHANG Jun, XU Shimei, NI Yanpeng. Research progress in chemical recycling of waste cotton and polyester textiles [J]. Journal of Textile Research, 2022, 43(05): 43-48. |
[14] | SUN Chunhong, DING Guangtai, FANG Kun. Cashmere and wool classification based on sparse dictionary learning [J]. Journal of Textile Research, 2022, 43(04): 28-32. |
[15] | WANG Xiaoqing, SHI Zhiming, LI Xiaoyu. Effect of ultrasonic treatment on composition and structure of rabbit hair keratin [J]. Journal of Textile Research, 2022, 43(04): 20-27. |
|