Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (04): 169-179.doi: 10.13475/j.fzxb.20230307401
• Dyeing and Finshing Engineering • Previous Articles Next Articles
LI Fang1,2, ZHANG Yili1, WANG Man1, MENG Xiangzhou2,3, SHEN Chensi1,2()
CLC Number:
[1] | 章耀鹏, 沈忱思, 徐晨烨, 等. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 2(8): 24-33. |
ZHANG Yaopeng, SHEN Chensi, XU Chenye, et al. Review on treatment technology for typical pollutants in textile industry[J]. Journal of Textile Research, 2021, 42(8): 24-33. | |
[2] |
狄惠琴, 张沂頔, 王洪涛. 化纤纺织染整废水中锑污染控制策略[J]. 工业水处理, 2021, 41(12): 22-28.
doi: 10.19965/j.cnki.iwt.2020-1014 |
DI Huiqin, ZHANG Yidi, WANG Hongtao. Strategies on antimony pollution control in the chemical fiber textile dyeing and finishing wastewater[J]. Industrial Water Treatment, 2021, 41(12): 22-28.
doi: 10.19965/j.cnki.iwt.2020-1014 |
|
[3] | 李方. 纺织工业排污许可证管理与污染防治技术[M]. 北京: 中国环境科学出版社, 2020: 46. |
LI Fang. Emission permit management and pollution prevention technology for the textile industry[M]. Beijing: China Environmental Science Press, 2020: 46. | |
[4] | 董冲冲. 涤纶生命周期中重金属锑的来源解析及检测[D]. 上海: 东华大学,2016: 14. |
DONG Chongchong. Source analysis and detection of heavy matals antimony in the life cycle of polyester[D]. Shanghai: Donghua University, 2016: 14. | |
[5] | 李航彬, 杨志辉, 袁平夫, 等. 湘中锑矿区土壤重金属锑的污染特征[J]. 环境科学与技术, 2011, 34(1): 70-74. |
LI Hangbin, YANG Zhihui, YUAN Pingfu, et al. Characteristics of antimony pollution in soils at mining areas in central Hunan Province[J]. Environmental Science & Technology, 2011, 34(1): 70-74. | |
[6] | UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151(15): 326-342. |
[7] | 任杰, 刘晓文, 李杰, 等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学, 2020, 39(12): 3436-3449. |
REN Jie, LIU Xiaowen, LI Jie, et al. Analysis of exposure status quo and environmental chemical behaviors of antimony in China[J]. Environmental Chemistry, 2020, 39(12): 3436-3449. | |
[8] | 沈忱思, 刘志保, 章耀鹏, 等. 纺织印染行业锑排放特征与治理技术[J]. 西安工程大学学报, 2022, 36(3): 9-19. |
SHEN Chensi, LIU Zhibao, ZHANG Yaopeng, et al. Characteristics and control technologies of antimony discharge in textile printing and dyeing industry[J]. Journal of Xi'an Polytechnic University, 2022, 36(3): 9-19. | |
[9] | ALHO L, SOUZA J, ROCHA G S, et al. Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae[J]. Environmental Pollution, 2020. DOI: 10.1016/j.envpol.2020.114856. |
[10] | 何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004(1): 131-135. |
HE Mengchang, WAN Hongyan. Distribution, speciation, toxicity and bioavailability of antimony in the environment.[J]. Progress in Chemistry, 2004(1): 131-135. | |
[11] |
冯人伟, 韦朝阳, 涂书新. 植物对锑的吸收和代谢及其毒性的研究进展[J]. 植物学报, 2012, 47(3): 302-308.
doi: 10.3724/SP.J.1259.2012.00302 |
FENG Renwei, WEI Chaoyang, TU Shuxin. Research advances in uptake, metabolism and toxicity of antimony in plants[J]. Chinese Bulletin of Botany, 2012, 47(3): 302-308. | |
[12] | MARKIEWICZ M, MROZIK W, REZWAN K, et al. Changes in zeta potential of imidazolium ionic liquids modified minerals: implications for determining mechanism of adsorption[J]. Chemosphere, 2013, 90(2): 706-712. |
[13] | ARNON D. Copper enzymes in isolated chloroplasts.Polyphenoloxidases in Beta vulgaris[J]. Plant Physiol, 1949, 24(1): 1-15. |
[14] | GEORGIOU C D, GRINTZALIS K, ZERVOUDAKIS G, et al. Mechanism of coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins[J]. Analytical & Bioanalytical Chemistry, 2008, 391(1): 391-403. |
[15] | CAI Y, MU W J, JIA K, et al. Effects of three nanomaterials on growth, photosynthetic characteristics and production of reactive oxygen species of diatom Nitzschia Palea[J]. Chemistry and Ecology, 2022, 38(2): 145-161. |
[16] | GARRIDO I, ORTEGA A, HERNÁNDEZ M, et al. Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves[J]. Environmental Geochemistry and Health, 2021, 43(4): 1367-1383. |
[17] | LI D, HE T, SALEEM M, et al. Metalloprotein-specific or critical amino acid residues: perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress[J]. International Journal of Molecular Sciences, 2022, 23: 1734-1754. |
[18] | LI N, QIN L, JIN M, et al. Extracellular adsorption, intracellular accumulation and tolerance mechanisms of Cyclotella sp. to Cr(VI) stress[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128662. |
[19] | REZAYIAN M, NIKNAM V, EBRAHIMZADEH H. Oxidative damage and antioxidative system in algae[J]. Toxicology Reports, 2019(6): 1309-1313. |
[20] | 孔祥雪, 李宝珍, 杨金水. 微藻去除重金属镉的抗性机理研究进展[J]. 微生物学通报, 2017, 44(8): 1980-1987. |
KONG Xiangxue, LI Baozhen, YANG Jinshui. Research progress in microalgae resistance to cadmium stress[J]. Microbiology China, 2017, 44(8): 1980-1987. | |
[21] | WANG C, WANG X, WANG P, et al. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905[J]. Ecotoxicology & Environmental Safety, 2016, 132: 231-239. |
[22] | 王静. 铜绿微囊藻中砷的代谢与生物效应[D]. 天津: 天津大学,2012: 36-37. |
WANG Jing. Metabolism and biological effects of arsenic in Microcystis aeruginosa[D]. Tianjin: Tianjin University, 2012: 36-37. | |
[23] | 吴健. 不同结构类型离子液体对蛋白核小球藻的毒性研究[D]. 杭州: 浙江工商大学,2018: 48. |
WU Jian. Toxicity of ionic liquid with different structure on Chlorella pyrenoidosa[D]. Hangzhou: Zhejiang Gongshang University, 2018: 48. | |
[24] |
HAI Y, GANG P. Toxicity and bioaccumulation of copper in three green microalgal species[J]. Chemosphere, 2002, 49(5): 471-476.
pmid: 12363319 |
[25] | HUANG W J, WU C C, CHANG W C, et al. Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir[J]. Environmental Monitoring & Assessment, 2014(186): 805-814. |
[26] | LI S, YU Y, GAO X, et al. Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper[J]. Bioresource Technology, 2021. DOI: 10.1016/j.biortech.2021.126064. |
[27] | 黄飞. 蛋白核小球藻对无机砷的吸附吸收及作用机制[D]. 杭州: 浙江大学,2018: 3. |
HUANG Fei. The adsorption and uptake of inorganic arsenic by Chlorella pyrenoidosa and the interaction mechanism[D]. Hangzhou: Zhejiang University, 2018: 3. | |
[28] | 孟丽娜, 彭春莹, 李铁栋, 等. 基于蛋白质组学对螺旋藻砷胁迫响应机制的研究[J]. 生物技术通报, 2020, 36(4): 107-116. |
MENG Lina, PENG Chunying, LI Tiedong, et al. Proteomic analysis of Spirulina platensis in response to arsenic stresss[J]. Biotechnology Bulletin, 2020, 36(4): 107-116. | |
[29] | MISHRA S, STARK H J, KUPPER H. A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L[J]. Metallomics, 2014, 6(3): 444-454. |
[1] | LU Yaoyao, YE Juntao, RUAN Chengxiang, LOU Jin. Preparation and photocatalytic performance of titanium dioxide/porous carbon nanofibers composite material [J]. Journal of Textile Research, 2024, 45(04): 67-75. |
[2] | CHEN Rongxuan, SUN Hui, YU Bin. Preparation and photocatalytic properties of N-TiO2/ polypropylene melt-blown nonwovens [J]. Journal of Textile Research, 2024, 45(03): 137-147. |
[3] | HAN Bo, WANG Yulin, SHU Dawu, WANG Tao, AN Fangfang, SHAN Juchuan. Reactive dyeing using recycled dyeing wastewater [J]. Journal of Textile Research, 2023, 44(08): 151-157. |
[4] | WANG Guoqin, FU Xiaohang, ZHU Yuke, WU Liguang, WANG Ting, JIANG Xiaojia, CHEN Huali. Photodegradation mechanism and pathway of visible light-response mesoporous TiO2 for Rhodamine B [J]. Journal of Textile Research, 2023, 44(05): 155-163. |
[5] | ZHENG Linjuan, YU Jia, YIN Chong, LIANG Zhijie, MAO Qinghui. Preparation and photocatalytic properties of cotton fabrics loaded with polymetallic organic framework material [J]. Journal of Textile Research, 2022, 43(10): 106-111. |
[6] | ZHOU Xiaoju, HU Zhenglong, REN Yiming, XIE Landong. Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst [J]. Journal of Textile Research, 2022, 43(10): 97-105. |
[7] | YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation [J]. Journal of Textile Research, 2022, 43(09): 149-155. |
[8] | WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal\|organic framework/activated carbon fiber composites [J]. Journal of Textile Research, 2022, 43(08): 126-131. |
[9] | GAO Luxi, LÜ Xuechuan, ZHANG Chi, SONG Hanlin, GAO Xiaohan. Synthesis and decolorizing performance of modified flocculant for treating dyeing wastewater [J]. Journal of Textile Research, 2022, 43(07): 121-128. |
[10] | XIE Mengyu, HU Xiaolin, LI Xing, QU Jian'gang. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite [J]. Journal of Textile Research, 2022, 43(04): 117-123. |
[11] | DENG Yang, SHI Xianbing, WANG Tao, LIU Liwei, HAN Zhenbang. Preparation and performance of modified polyacrylonitrile fibers photocatalyst with MIL-53(Fe) [J]. Journal of Textile Research, 2022, 43(03): 58-63. |
[12] | WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60. |
[13] | ZHANG Mengdi, ZHANG Wei, YAO Jiming. Application of natural clay minerals in electrocoagulation of indigo dyeing wastewater [J]. Journal of Textile Research, 2022, 43(02): 196-201. |
[14] | SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110. |
[15] | LI Qing, CHEN Linghui, LI Dan, WU Zhiqiang, ZHU Wei, FAN Zenglu. Research progress in photocatalytic degradation of dyes using metal-organic frameworks [J]. Journal of Textile Research, 2021, 42(12): 188-195. |
|