Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (12): 216-224.doi: 10.13475/j.fzxb.20230402602
• Comprehensive Review • Previous Articles Next Articles
ZHANG Yongfang(), FEI Pengfei, YAN Zhifeng, WANG Shuhua, GUO Hong
CLC Number:
[1] | ASHJARAN A, AZARMI R. Survey on common bio fibers and polymers in recyclable textiles[J]. Journal of Chemical & Pharmaceutical Research, 2015, 7:202-208. |
[2] | SHEN F, XIAO W X, LIN L L, et al. Enzymatic saccharification coupling with polyester recovery from cottonebased waste textiles by phosphoric acid pretreatment[J]. Bioresource Technology, 2013, 130:248-255. |
[3] | WANG J, LI Y, WANG Z, et al. Influence of pretreatment on properties of cotton fiber in aqueous NaOH/urea solution[J]. Cellulose, 2016, 23(3):2173-2183. |
[4] | ASAADI S, HUMMEL M, HELLSTEN S, et al. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid[J]. Chemsuschem, 2016, 22(9):3250-3258. |
[5] | MUSSANA H, YANG X, TESSIMA M, et al. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system[J]. Industrial Crops and Products, 2018, 113: 225-233. |
[6] | HONG F, GUO X, ZHANG S, et al. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment[J]. Bioresource Technology, 2012, 104: 503-508. |
[7] | SILVA R D, WANG X, BYRNE N. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014, 55(4):29094-29098. |
[8] | 陈亚宁, 陈昀. 稀盐酸水解棉纤维反应过程的综合研究[J]. 北京服装学院学报(自然科学版), 2010, 30(2): 24-28. |
CHEN Yaning, CHEN Yun. Comprehensive study on the process of cotton fiber hydrolysis by dilute hydrochloric acid[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2010, 30(2):24-28. | |
[9] | CHU C Y, WU S Y, TSAI C Y, et al. Kinetics of cotton cellulose hydrolysis using concentrated acid and fermentative hydrogen production from hydrolysate[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8743-8750. |
[10] | JEIHANIPOUR A, KARIMI K, NIKLASSON C, et al. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles[J]. Waste Management, 2010, 30(12):2504-2509. |
[11] | LIN N, HUANG J, CHANG P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid)[J]. Carbohydrate Polymers, 2011, 83:1834-1842. |
[12] | CERQUEIRA D A, FILHO G R, MEIRELES C D S. Optimization of sugarcane bagasse cellulose acetyla-tion[J]. Carbohydrate Polymers, 2007, 69(3):579-582. |
[13] | FILHO G R, MONTEIRO D S, MEIRELES C D S, et al. Synthesis and characterization of cellulose acetate produced from recycled newspaper[J]. Carbohydrate Polymers, 2008, 73:74-82. |
[14] | 刘红茹, 陈韵. 醇解法分离废弃涤棉混纺织物工艺研究[J]. 合成纤维工业, 2015, 38(6):22-24. |
LIU Hongru, CHEN Yun. Separation of waste polyester-cotton blended fabrics by glycolysis method[J]. China Synthetic Fiber Industry, 2015, 38(6):22-24. | |
[15] | MA M Y, WANG S, LIU Y, et al. Insights into the depolymerization of polyethylene terephthalate in methanol[J]. Journal of Applied Polymer Science, 2022.DOI:10.1002/app.52814. |
[16] | SARTOVA K, OMURZAK E, KAMBAROVA G, et al. Activated carbon obtained from the cotton processing wastes[J]. Diamond and Related Materials, 2019, 91:90-97. |
[17] | OZSEL B K, NIS B, MERYEMOGLU B, et al. Utilization of waste cotton linter for preparation of activated carbon to be used as catalyst support in aqueous-phase reforming process[J]. Environmental Progress & Sustainable Energy, 2019, 38(2):445-450. |
[18] | KIM S H, LEE C M, KAFLE K. Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG[J]. Korean Journal of Chemical Engineering, 2013, 30(12):2127-2141. |
[19] | ONDA A, OCHI T, YANAGISAWA K. Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal condi-tions[J]. Topics In Catalysis, 2009, 52(6/7):801-807. |
[20] | TALLARICO S, COSTANZO P, BONACCI S, et al. Combined ultrasound/microwave chemocatalytic method for selective conversion of cellulose into lactic acid[J]. Scientific Reports, 2019. DOI:10.1038/s41598-019-55487-y. |
[21] | 汪利平. 纤维素水热降解制备5-羧甲基糠醛的实验研究[D]. 天津: 天津大学, 2006:14-26. |
WANG Liping. Experimental study on the preparation of 5-carboxymethylfurfural by hydrothermal degradation of cellulose[D]. Tianjin: Tianjin University, 2006:14-26. | |
[22] | CUI L P, SHI S, HOU W S, et al. Hydrolysis and carbonization mechanism of cotton fibers in subcritical water[J]. New Carbon Materials, 2018, 33(3):245-250. |
[23] | BEDIAKO J K, WEI W, YUN Y S. Conversion of waste textile cellulose fibers into heavy metal adsorbents[J]. Journal of Industrial and Engineering Chemistry 2016, 43:61-68. |
[24] | CHENG X X, FU A P, LI H L, et al. Sustainable preparation of copper particles decorated carbon microspheres and studies on their bactericidal activity and catalytic properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10):2414-2422. |
[25] | MÖLLER M, HARNISCH F, SCHRÖDER U. Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivi-ty[J]. RSC Advances, 2013, 3(27):11035-11044. |
[26] | SASAKI M, FANG Z, FUKUSHIMA Y, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial and Engineering Chemistry Research, 2000, 39(8):2883-2890. |
[27] | ABEL S, PETERS A, TRINKS S, et al. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 2013, 202/203:183-191. |
[28] | REICHE S, KOWALEW N, SCHLOGL R. Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon[J]. Chemphyschem, 2015, 16(3): 579-587. |
[29] | DU Z, HU B, SHI A, et al. Cultivation of a microalga chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process[J]. Bioresource Technology, 2012, 126:354-357. |
[30] | PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1:32-65. |
[31] | SAVAGE P E. Organic chemical reactions in supercritical water[J]. Chemical Reviews, 1999, 99(2): 603-622. |
[32] | RUIZ H A, RODRÍGUEZ-JASSO R M, FERNANDES B D, et al. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 21: 35-51. |
[33] | LING C, SHI C, HOU W S, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161:157-165. |
[34] | ZHANG Y F, HOU W S, GUO H, et al. Preparation and characterization of carbon microspheres from waste cotton textiles by hydrothermal carbonization[J]. Journal of Renewable Materials, 2019, 7(12): 1309-1319. |
[35] | LU X W, PELLECHIA P J, FLORA J R V, et al. Inflfluence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose[J]. Bioresource Technology, 2013, 138:180-190. |
[36] | WANG S H, WEI M X, XU Q L, et al. Functional porous carbons from waste cotton fabrics for dyeing wastewater purification[J]. Fibers and Polymers, 2016, 17(2):212-219. |
[37] | AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1615-1624. |
[38] | ZHANG L, LI C J, ZHOU D, et al. Hydrothermal liquefaction of water hyacinth: product distribution and identification[J]. Energy Sources Part A: Recovery, Utilization and Environmental Effects, 2013, 35(14): 1349-1357. |
[39] | MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20 (3):848-889. |
[40] | KRUSE A. Supercritical water gasification[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2008, 2(5): 415-437. |
[41] | KRUSE A, HENNINGSEN T, SINAG A, et al. Biomass gasification in supercritical water: influence of the dry matter content and the formation of phenols[J]. Industrial & Engineering Chemistry Research, 2003, 42(16): 3711-3717. |
[42] | SINAG A, GULBAY S, USKAN B, et al. Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose[J]. Supercrit Fluids, 2009, 50:121-127. |
[43] | INOUE S, UNO S, MINOWA T. Carbonization of cellulose using the hydrothermal method[J]. Journal of Chemical Engineering of Japan, 2008, 41(3):210-215. |
[44] | SAKAKI T, SHIBATA M, MIKI T, et al. Decomposition of cellulose in near critical[J]. Energy Fuels, 1996, 10:684-688. |
[45] | XIAO L, SHI Z, XU F, et al. Hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2012, 118:619-623. |
[46] | SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9):2281-2289. |
[47] | QI Y J, ZHANG M, QI L, et al. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization[J]. RSC Advances, 2016, 6(25):20814-20823. |
[48] | FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining, 2010, 4:160-177. |
[49] | GAGIC T, PERVA-UZUNALIC A, KNEZ Z, et al. Hydrothermal degradation of cellulose at temperature from 200 to 300℃[J]. American Chemical Society, 2018, 57: 6576-6584. |
[50] | YAN L F, QI X Y. Degradation of cellulose to organic acids in its homogeneous alkaline aqueous solution[J]. American Chemical Society, 2014, 2(4):897-901. |
[51] | EHARA K, SAKA S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments[J]. Journal of Wood Science, 2005, 51(2):148-153. |
[52] | KIM D, YOSHIKAWA K, PARK K. Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy[J]. Energies, 2015, 8(12): 14040-14048. |
[53] | KIM D, LEE K, PARK K Y. Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization[J]. Journal Of Industrial And Engineering Chemistry, 2016, 42:95-100. |
[54] | SAHA N, SABA A, REZA M T. Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood[J]. Journal of Analytical & Applied Pyrolysis, 2019, 137:138-145. |
[55] | YANG F, LI G, GAO P, et al. Mild hydrothermal degradation of cotton cellulose by using a mixed-metal-oxide ZnO-ZrO2 catalyst[J]. Energy Technology, 2013, 1:581-586. |
[56] | ZHAO Y, LI W, ZHAO X, et al. Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose[J]. Materials Research Innovations, 2013, 17(7):546-551. |
[57] | DEGUCHI S, TSUJII K, HORIKOSHI K. Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions[J]. Green Chemistry, 2008, 10(6):623-626. |
[58] | ZHANG C, LIN S, PENG J, et al. Preparation of highly porous carbon through activation of NH4Cl induced hydrothermal microsphere derivation of glucose[J]. RSC Advances, 2017, 7(11): 6486-6491. |
[59] | ZHAO H Y, LU X A, WANG Y, et al. Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization[J]. Journal of Materials Science, 2017, 52(18):10787-10799. |
[60] | GARCÍA-BORDEJÉ E, PIRES E, FRAILE J M. Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions[J]. Carbon, 2017, 123:421-432. |
[61] | MOLLER M, NILGES P, HARNISCH F, et al. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation[J]. Chemsuschem, 2011, 4(5):566-579. |
[62] | SAKA S, UENO T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water[J]. Cellulose, 1999, 6(3):177-191. |
[63] | ZHANG Y F, DAI J M, GUO H, et al. A comparative study of carbon microsphere preparation by the hydrothermal carbonization of waste cotton fibers, viscose fibers and Avicel[J]. New Carbon Materials, 2020, 35(3):286-294. |
[1] | WANG Peng, SHEN Jiakun, LU Yinhui, SHENG Hongmei, WANG Zongqian, LI Changlong. Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes [J]. Journal of Textile Research, 2023, 44(12): 10-16. |
[2] | LI Hongying, XU Yi, YANG Fan, REN Ruipeng, ZHOU Quan, WU Lijie, LÜ Yongkang. Preparation of three-dimensional ping-pong chrysanthemum-like CdS/BiOBr composite and its application on photocatalytic degradation of Rhodamine B [J]. Journal of Textile Research, 2023, 44(09): 124-133. |
[3] | SHEN Ya, CHEN Tao, ZHANG Lijie. Research progress in recycling and reuse of waste textiles and clothing [J]. Journal of Textile Research, 2023, 44(07): 232-239. |
[4] | XING Jian, ZHANG Shucheng, YU Tianjiao, TANG Wenbin, WANG Liang, XU Zhenzhen, LIANG Botao. Research progress in recycling of waste polyphenylene sulfide fibers [J]. Journal of Textile Research, 2023, 44(04): 222-229. |
[5] | HAN Fei, LANG Chenhong, QIU Yiping. Research progress of supervision and inspection system for recycling waste textiles [J]. Journal of Textile Research, 2023, 44(03): 231-238. |
[6] | PANG Mingke, WANG Shuhua, SHI Sheng, XUE Lizhong, GUO Hong, GAO Chengyong, LU Jianjun, ZHAO Xiaowan, WANG Zihan. Preparation and application of flame retardant waterborne polyurethane by alcoholysis of waste polyethylene terephthalate fiber [J]. Journal of Textile Research, 2023, 44(02): 214-221. |
[7] | WU Jing, JIANG Zhenlin, JI Peng, XIE Ruimin, CHEN Ye, CHEN Xiangling, WANG Huaping. Research status and development trend of perspective preparation technologies and applications for textiles [J]. Journal of Textile Research, 2023, 44(01): 1-10. |
[8] | ZHOU Xiaoju, HU Zhenglong, REN Yiming, XIE Landong. Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst [J]. Journal of Textile Research, 2022, 43(10): 97-105. |
[9] | CHEN Long, ZHOU Zhe, ZHANG Jun, XU Shimei, NI Yanpeng. Research progress in chemical recycling of waste cotton and polyester textiles [J]. Journal of Textile Research, 2022, 43(05): 43-48. |
[10] | FAN Wei, LIU Hongxia, LU Linlin, DOU Hao, SUN Yanli. Progress in recycling waste natural fiber textiles and high-value utilization strategy [J]. Journal of Textile Research, 2022, 43(05): 49-56. |
[11] | SHI Sheng, WANG Yan, LI Fei, TANG Jiandong, GAO Xiangyu, HOU Wensheng, GUO Hong, WANG Shuhua, JI Jiaqi. Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution [J]. Journal of Textile Research, 2022, 43(02): 140-148. |
[12] | JIANG Tao, ZHOU Li, WANG Lin, CHENG Weizhao, ZHOU Anzhan. Typical model for recycling of used clothes and analysis of environmental impact [J]. Journal of Textile Research, 2022, 43(01): 186-192. |
[13] | DONG Shuang, KONG Yuying, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Chemical separation and recycling of waste polyester/cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185. |
[14] | LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20. |
[15] | YANG Xing, LI Qingzhou, WU Min, ZHOU Yongkai. Circular economy in European Union textile industry chain and key issues of waste textiles treatment [J]. Journal of Textile Research, 2022, 43(01): 106-112. |
|