Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (06): 227-234.doi: 10.13475/j.fzxb.20230506802
• Comprehensive Review • Previous Articles Next Articles
WANG Jianping1,2,3,4, SHEN Jinzhu1,2,3, YAO Xiaofeng1,2,3(), ZHU Yanxi1,2,3, ZHANG Fan5
CLC Number:
[1] | 闻力生. 服装智能制造需用好数据资产[J]. 纺织科学研究, 2022(3): 32-34. |
WEN Lisheng. Intelligent manufacturing of clothing requires well use of data assets[J]. Textile Science Research, 2022(3): 32-34. | |
[2] | 闻力生. 人工智能在服装智能制造中的应用[J]. 纺织高校基础科学学报, 2020, 33(2): 30-36. |
WEN Lisheng. Application of artificial intelligence in garment intelligent manufacturing[J]. Basic Sciences Journal of Textile Universities, 2020, 33(2): 30-36. | |
[3] | 闻力生. 服装企业智能制造的实践[J]. 纺织高校基础科学学报, 2017, 30(4): 468-474. |
WEN Lisheng. Practice of intelligence manufacturing in apparel enterprises[J]. Basic Sciences Journal of Textile Universities, 2017, 30(4): 468-474. | |
[4] | 刘汉邦, 李新荣, 刘立东. 服装面料自动抓取转移方法的研究进展[J]. 纺织学报, 2021, 42(1): 190-196. |
LIU Hanbang, LI Xinrong, LIU Lidong. Research progress if automatic grabbing and transfer methods for garment fabrics[J]. Journal of Textile Research, 2021, 42(1): 190-196. | |
[5] | LIU Y, SU J, LI X, et al. A systematic automated grasping approach for automatic manipulation of fabric with soft robot grippers[J]. Industrial Robot-the International Journal of Robotics Research and Application, 2023, 50(4):623-632. |
[6] | 沈津竹. 基于软体手指的服装裁片堆垛抓取模型研究[D]. 无锡: 江南大学, 2021:1-57. |
SHEN Jinzhu. Grasping model of garment cutting pieces for robotic soft fingers[D]. Wuxi: Jiangnan University, 2021:1-57. | |
[7] | SU J Q, SHEN J Z, LYU J. Arrangement of soft fingers for automatic grasping of fabric pieces of garment[J]. Textile Research Journal, 2022, 92(1/2): 143-159. |
[8] | FAILLI F, DINI G. An innovative approach to the automated stacking and grasping of leather plies[J]. Cirp Annals-Manufacturing Technology, 2004, 53(1): 31-34. |
[9] | ČUBRIC G, SALOPEK ČUBRIC I. Study of grippers in automatic handling of nonwoven material[J]. Journal of The Institution of Engineers (India): Series E, 2019, 100:167-173. |
[10] | CUBRIC G. Catching the woven fabric with vacuum gripper[C]//NIKOLIC G, SIGNJAR S. 23rd International DAAAM Symposium on Intelligent Manufacturing and Automation - Focus on Sustainability. New York: Curran Associates, Inc, 2012: 465-468. |
[11] | OZCELIK B, ERZINCANLI F. A non-contact end-effector for the handling of garments[J]. Robotica, 2002, 20: 447-450. |
[12] | DINI G, FANTONI G, FAILLI F. Grasping leather plies by Bernoulli grippers[J]. CIRP Annals, 2009, 58(1): 21-24. |
[13] | LIEN T K, DAVIS P G G. A novel gripper for limp materials based on lateral Coanda ejectors[J]. Cirp Annals-Manufacturing Technology, 2008, 57(1): 33-36. |
[14] | LIU H B, LI X R, FENG W Q, et al. Grabbing performance of non-contact gripper based on Coanda effect for garment fabrics[J]. Journal of Textile Research, 2022, 43(2): 208-213. |
[15] | 刘汉邦, 李新荣, 冯文倩, 等. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(2): 208-213. |
LIU Hanbang, LI Xinrong, FENG Wenqing, et al. Grabbing performance of non-contact gripper based on Coanda effect for garment fabrics[J]. Journal of Textile Research, 2022, 43(2): 208-213. | |
[16] | 刘立东, 李新荣, 刘汉邦, 等. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(3): 161-168. |
LIU Lidong, LI Xinrong, LIU Hanbang, et al. Electrostatic adsorption model based on characteristics of weft knitted fabrics[J]. Journal of Textile Research, 2021, 42(3): 161-168. | |
[17] | 刘立东, 李新荣, 刘汉邦, 等. 服装面料静电吸附抓取转移电极板优化设计[J]. 纺织学报, 2021, 42(2): 185-192. |
LIU Lidong, LI Xinrong, LIU Hanbang, et al. Optimization design of electrode plate based on electrostatic adsorption and transfer used for garment fabric[J]. Journal of Textile Research, 2021, 42(2): 185-192. | |
[18] | SUN B. A new electrostatic gripper for flexible handling of fabrics in automated garment manufacturing[C]//ZHANG X Y. 15th IEEE International Conference on Automation Science and Engineering (IEEE CASE). Piscataway: IEEE, 2019: 879-884. |
[19] | FENG W Q, HU Y L, LI X R, et al. Robot end effector based on electrostatic adsorption for manipulating garment fabrics[J]. Textile Research Journal, 2022, 92(5/6): 691-705. |
[20] | KONDRATAS A. Robotic gripping device for garment handling operations and its adaptive control[J]. Fibres & Textiles in Eastern Europe, 2005, 13(4): 84-89. |
[21] | SOFTWEAR AUTOMATION[EB/OL].(2021-01-01)[2024-02-16]. https://softwearautomation.com/sewbots/. |
[22] | ABE T, KAWASAKI Y, YAMAZAKI K. A robotic end-effector with rolling up mechanism for pick-and-release of a cotton sheet[J]. Robomech Journal, 2020, 7(1): 37. |
[23] | EBRAHEEM Y, DREAN E, Adolphe D C. Universal gripper for fabrics-design, validation and inte-gration[J]. International Journal of Clothing Science and Technology, 2021, 33(4): 643-663. |
[24] | YAMAZAKI K, ABE T. A versatile end-effector for pick-and-release of fabric parts[J]. Ieee Robotics and Automation Letters, 2021, 6(2): 1431-1438. |
[25] | BORRAS J, ALENYA G, TORRAS C. A grasping-centered analysis for cloth manipulation[J]. Ieee Transactions on Robotics, 2020, 36(3): 924-936. |
[26] | ONO E. On better pushing for picking a piece of fabric from layers[C]//TAKASE K, IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE, 2007: 589-59. |
[27] | ONO E. On friction picking up a piece of fabric from layers[C]//KITAGAKI K, KAKIKURA M. IEEE International Conference on Mechatronics Automation. Piscataway: IEEE, 2005: 2206-2211. |
[28] | KOUSTOUMPARDIS P N. A 3-finger robotic gripper for grasping fabrics based on cams-followers mechanism[C]//SMYRNIS S, ASPRAGATHOS N A. 26th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). Cham: Springer Nature, 2017: 612-620. |
[29] | KOUSTOUMPARDIS P N. Underactuated 3-finger robotic gripper for grasping fabrics[C]//NASTOS K X, ASPRAGATHOS N A. 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). Piscataway: IEEE, 2014:1-8. |
[30] | JILICH M, FRASCIO M, AVALLE M, et al. Development of a gripper for garment handling designed for additive manufacturing[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2021, 235(10): 1799-1810. |
[31] | LE L A. Application of a biphasic actuator in the design of a robot gripper for garment handling[C]// LE L A, ZOPPIM, JILICHM, et al.ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC). New York: American Society of Mechanical Engineers, 2014: 1-10 |
[32] | LE L. Development and analysis of a new specialized gripper mechanism for garment handling[C]// LE L, ZOPPIM, JILICHM, et al.ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE). New York: American Society of Mechanical Engineers. 2013.DOI:10.115/DETC2013-13150. |
[33] | KOUSTOUMPARDIS P. A review of gripping devices for fabric handling[C]//ASPRAGATHOS N. International Conference on Intelligent Manipulation and Grasping IMG04. Delhi: Emerald Group Publishing Limited. 2004: 229-234. |
[34] | 张蕾, 韦攀东, 李鹏飞, 等. 采用神经网络算法的多指机械手织物抓取规划[J]. 纺织学报, 2017, 38(1): 132-139. |
ZHANG Lei, WEI Pandong, LI Pengfei, et al. Fabric grasp planning for muti-fingered dexterous hand based on neural network algorithm[J]. Journal of Textile Research, 2017, 38(1): 132-139. | |
[35] | RANZANI T, GERBONI G, CIANCHETTI M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspir Biomim, 2015. DOI:10.1088/1748-3190/10/3/035008. |
[36] | 沈津竹, 赵晓露, 张帆, 等. 柔性康复手套设计与工效性评价[J]. 纺织学报, 2020, 41(9): 119-127. |
SHEN Jinzhu, ZHAO Xiaolu, ZHANG Fan, et al. Design and ergonomic evaluation of flexible rehabilitation gloves[J]. Journal of Textile Research, 2020, 41(9): 119-127. | |
[37] | 沈津竹, 苏军强. 软体机械手逐层分离服装裁片的影响因素[J]. 服装学报, 2021, 6(4): 357-365. |
SHEN Jinzhu, SU Junqiang. Influence factors of the soft manipulator to separate the garment cutting pieces layer by layer[J]. Journal of Clothing Research, 2021, 6(4): 357-365. | |
[38] | POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135-143. |
[39] |
王延杰, 赵鑫, 王建峰, 等. 软体机器人驱动技术研究进展[J]. 液压与气动, 2022, 46(12): 1-11.
doi: 10.11832/j.issn.1000-4858.2022.12.001 |
WANG Yanjie, ZHAO Xin, WANG Jianfeng, et al. Research progress on actuating technology of soft robot[J]. Chinese Hydraulics & Pneumatics, 2022, 46(12): 1-11. | |
[40] | 董效, 冯显英. 软体机器人研究现状及展望[J]. 现代制造技术与装备, 2022, 58(9): 70-73. |
DONG Xiao, FENG Xianying. Research status and prospect of soft robot[J]. Modern Manufacturing Technology and Equipment, 2022, 58(9): 70-73. | |
[41] | KU S, MYEONG J, KIM H Y, et al. Delicate fabric handling using a soft robotic gripper with embedded microneedles[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4852-4858. |
[42] | SU J Q, SHEN J Z, ZHANG F. Grasping model of fabric cut pieces for robotic soft fingers[J]. Textile Research Journal, 2022, 92(13/14): 2223-2238. |
[43] | SU J, WANG N, ZHANG F. A design of bionic soft gripper for automatic fabric grasping in apparel manufacturing[J]. Textile Research Journal, 2023, 93(7/8): 1587-1601. |
[44] | RAGUNATHAN S, KARUNAMOORTHY L. Modeling and dynamic analysis of reconfigurable robotic gripper system for handling fabric materials in garment industries[J]. Journal of Advanced Manufacturing Systems, 2006, 5: 233-254. |
[45] | LANKALAPALLI S, EISCHEN J W. Optimal pick-up locations for transport and handling of limp materials: part I: one-dimensional strips[J]. Textile Research Journal, 2003, 73(9): 787-796. |
[46] | LIN H, CLIFFORD M J, TAYLOR P M, et al. 3D mathematical modelling for robotic pick up of textile composites[J]. Composites Part B: Engineering, 2009, 40(8): 705-713. |
[47] | LIN H, TAYLOR P M, BULL S J. Modelling of contact deformation for a pinch gripper in automated material handling[J]. Mathematical and Computer Modelling, 2007, 46(11/12): 1453-1467. |
[48] | 《中国制造2025》解读之:我国制造业发展进入新的阶段[J]. 工业炉, 2023, 45(2): 60. |
Interpretation of Made in China 2025: China's manufacturing industry has entered a new stage[J]. Industrial Furnace, 2023, 45(2): 60. |
[1] | WANG Jianping, ZHU Yanxi, SHEN Jinzhu, ZHANG Fan, YAO Xiaofeng, YU Zhuoling. Advances in application of soft robot in apparel field [J]. Journal of Textile Research, 2024, 45(05): 239-247. |
[2] | CHEN Ke, ZHANG Di, JI Yijun, LE Rongqing, SU Xuzhong. Effect of combed polyester top content on properties of polyester knitted fabrics [J]. Journal of Textile Research, 2021, 42(09): 66-69. |
[3] | HE Yaqin, BI Xuerong, QIAN Xixi, RUAN Jun, YU Chongwen. Simulation study on effect of drafting on sliver unevenness [J]. Journal of Textile Research, 2021, 42(06): 85-90. |
[4] | LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Optimization design of electrode plate based on electrostatic adsorption and transfer used for garment fabric [J]. Journal of Textile Research, 2021, 42(02): 185-192. |
[5] | HUANG Zhenzhen, MOK Pikyin, WEN Lihong. Garment production line balance based on genetic algorithm and simulation [J]. Journal of Textile Research, 2020, 41(07): 154-159. |
[6] | YUAN Tianxing, SUN Zhihong, LÜ Hongzhan, LI Xueqing, GU Shenghui. Study on braiding of knotless netting [J]. Journal of Textile Research, 2019, 40(09): 70-74. |
[7] | CHEN Meiyu, SUN Runjun, ZHANG Changqi, LIU Xianfeng. Pressure reduction property of warp-knitted spacer fabric [J]. Journal of Textile Research, 2019, 40(07): 58-63. |
[8] | CHEN Jingjing, WANG Biqi, WANG Xueqin. Innovation design and performance test of needle composite wool fabric [J]. Journal of Textile Research, 2019, 40(03): 49-53. |
[9] | . Arrangement of garment production line by particle swarm algorithm [J]. Journal of Textile Research, 2018, 39(10): 120-124. |
[10] | . Digital yarn simulation under fiber scale [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 150-155. |
[11] | . Internet-based computer-aided design system for weft knitted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 150-155. |
[12] | . Pattern design of multi-bar raschel positioning lace fabric for dress [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 114-118. |
[13] | . Distribution of fiber left ends in carded sliver [J]. Journal of Textile Research, 2016, 37(05): 28-31. |
[14] | . Influence of metal yarns arrangement mode on shielding effectiveness [J]. Journal of Textile Research, 2015, 36(12): 25-31. |
[15] | . Influential factors of electromagnetic shielding effectiveness based on the effective woven fabrics structure model [J]. Journal of Textile Research, 2015, 36(07): 43-49. |
|