Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (09): 137-145.doi: 10.13475/j.fzxb.20230603801
• Dyeing and Finishing Engineering • Previous Articles Next Articles
LU Daokun1, WANG Shifei2, DONG Qian1, SHI Naman1, LI Siqi1, GAN Lulu1, ZHOU Shuang1, SHA Sha1, ZHANG Ruquan1, LUO Lei1,2()
CLC Number:
[1] | 王成成, 龚筱丹, 王振, 等. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(5):38-42. |
WANG Chengcheng, GONG Xiaodan, WANG Zhen, et al. Preparation of highly sensitive temperature sensitive color changing microcapsules and their application in intelligent textiles[J]. Journal of Textile Research, 2022, 43(5): 38-42. | |
[2] | LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electrom agnetic interference shielding, humidity monitoring and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019. DOI:101002/adfm.201905197. |
[3] | LAN C, GUO M, LI C, et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding[J]. ACS Applied Materials and Interfaces, 2020, 12(6): 7477-7485. |
[4] |
ZHANG J Z, UZUN S, SEYDIN S, et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 2020, 6(2): 254-265.
doi: 10.1021/acscentsci.9b01217 pmid: 32123744 |
[5] | 荣凯, 樊威, 王琪, 等. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(9):10-16. |
RONG Kai, FAN Wei, WANG Qi, et al. Progress inthe application of two-dimensional transition metal carbon/nitrogen compound composite fibers in the field of intelligent wearability[J]. Journal of Textile Research, 2021, 42 (9): 10-16. | |
[6] | ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4895-4905. |
[7] | ZHANG C J, KREMER M P, SERAL A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.202008795. |
[8] | LEVITT A, ZHANG J, DIN G, et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices[J]. Advanced Functional Materials, 2020, 30(47): 1-22. |
[9] | ANASORI B, LUHATSKAYA M R, GOTSI Y. 2D metal carbides and nitrides (MXene) for energy storage[J]. Nature Reviews Materials, 2017. DOI: 10.1038/natrevmats.2016.98. |
[10] | ANDREA R, MARIA C, RIGHI A V S, et al. Perspectives of 2D MXene tribology[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202207757. |
[11] | BABAK A, MICHAEL N, GUEST E, et al. Two-dimensional MXene[J]. MRS Bulletin, 2023, 48(3):238-244. |
[12] | LI M, LI X, QIN G, et al. Halogenated MXene with electrochemically active terminals for high performance zinc ion batteries[J]. ACS Nano, 2021, 15(7):1077-1085. |
[13] | ZHANG C, MCKEON C, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitor[J]. Nature Communicators, 2019, 10(1): 1-9. |
[14] | LI J, ZHANG W, YANG L Y, et al. Conductive fabrics based on carbon nanotube/Ti3C2Tx MXene/polyaniline/liquid metal quaternary composites with improved performance of EMI shielding and joule heating[J]. Composites Communications, 2023. DOI: 10.1016/j.coco.2022.101476. |
[15] | GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019, 26(4): 2833-2847. |
[16] | ZHENG X H, NIE W Q, Hu Q L, et al. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection-science direct[J]. Materials & Design, 2021. DOI:10.1016/jmatdes.2020.109442. |
[17] | CHEN Z, ASIF M, WANG R, et al. Recent trends in synthesis and applications of porous MXene assemblies: a topical review[J]. The Chemical Record, 2022. DOI: 10.1016/jcej.2020.124057. |
[18] | YAO M Y, Chen Y Y, WANG Z, et al. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors[J]. Chemical Engineering Journal, 2020. DOI:10.1016/jcej.2020.124057. |
[19] | LUO E L, LIU Q W, ZHANG B Z, et al. Binder-free flexible Ti3C2Tx MXene/reduced graphene oxide/carbon nanotubes film as electrode for asymmetric supercapacitor[J]. Chemical Engineering Journal, 2023. DOI:10.1016/jcej.2023.145553. |
[20] | ZHOU Z Y, SEIF A, POURHASHEM S, et al. Experimental and theoretical studies toward superior anti-corrosive nanocomposite coatings of aminosilane wrapped layer-by-layer graphene oxide @MXene /waterborne epoxy[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 51275-51290. |
[21] | ZHAN Z, SONG Q, ZHOU Z, et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2019, 7(32): 9820-9829. |
[22] | WANG F X, GUO J X, Li S H, et al. Self-assembly of MXene-decorated stearic acid/ionic liquid phase change material emulsion for effective photo-thermal conversion and storage[J]. Ceramics International, 2023, 49(1): 480-488. |
[23] | LI C, WANG L, ZHANG X, et al. Cation-deficient T-Nb2O5/graphene hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.143507. |
[24] | WANG L, ZHANG X, XU Y A, et al. Tetrabutylammonium-intercalated 1T-MoS2nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202104286. |
[25] | HEMMATI, SAHARLI, WANG G, et al. 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon micro tubes toward high-rate Li-ion capacitors[J]. Nano Energy, 2019, 56: 118-126. |
[26] | YI S, WANG L, ZHANG X, et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/RGO hybrid nan flakes for advanced lithium-ion capacitors[J]. Science Bulletin, 2021, 66(9): 914-924. |
[27] | LIME, JO C, KIM, et al. Facile synthesis of Nb2O5@Carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid super-capacitors[J]. Acs Nano, 2021, 9(7): 7497-7505. |
[28] | 佘明华, 徐瑞东, 韦继超, 等. 纺织基柔性触觉传感器及可穿戴应用进展[J]. 丝绸, 2023, 60(3):60-72. |
SHE Minghua, XU Ruidong, WEI Jichao, et al. Progress in textile based flexible tactile sensors and wearable applications[J]. Journal of Silk, 2023, 60(3):60-72. | |
[29] | TANG Y, XU Y, YANG J, et al. Stretchable and wearable conductometric VOC sensors based on microstructured MXene/polyurethane core-sheath fibers[J]. Sensors and Actuators B: Chemical, 2021. DOI: 10.1016/jsnb.2021.130500. |
[30] | JIANG J, CHEN X, NIU Y, et al. Advances in flexible sensors with MXene materials[J]. New Carbon Materials, 2022, 37(2): 303-320. |
[1] | WANG Yujia, WANG Yi, WANG Yasi, DAI Fangyin, LI Zhi. Preparation and sensing performance of flexible pressure sensor based on natural flat silk cocoon structure [J]. Journal of Textile Research, 2024, 45(09): 10-17. |
[2] | XIE Hong, ZHANG Linwei, SHEN Yunping. Continuous dynamic clothing pressure prediction model based on human arm and accuracy characterization method [J]. Journal of Textile Research, 2024, 45(07): 150-158. |
[3] | SHI Chu, LI Jun, WANG Yunyi. Research progress on smart footwear for monitoring temperature in diabetic foot [J]. Journal of Textile Research, 2024, 45(07): 240-247. |
[4] | WANG Xiaodong, CHEN Junpeng, PEI Zeguang. Method for solving crosstalk in fabric pressure sensor array based on U-Net convolutional neural network [J]. Journal of Textile Research, 2024, 45(07): 86-93. |
[5] | WANG Jian, ZHANG Rui, ZHENG Yingying, DONG Zhengmei, ZOU Zhuanyong. Research progress of flexible textile pressure sensor based on MXene [J]. Journal of Textile Research, 2024, 45(06): 219-226. |
[6] | TAN Yidan, ZHANG Zhaohua, LI Shihan. Effect of different sensory modalities on wetness perception of fabrics [J]. Journal of Textile Research, 2024, 45(06): 82-88. |
[7] | WANG Nan, SUN Hui, YU Bin, XU Lei, ZHU Xiangxiang. Preparation and sensing performances of flexible temperature sensor prepared from melt-blown nonwoven materials [J]. Journal of Textile Research, 2024, 45(05): 138-146. |
[8] | LU Yan, HONG Yan, FANG Jian. Research progress on applications of machine learning in flexible strain sensors in context of material intelligence [J]. Journal of Textile Research, 2024, 45(05): 228-238. |
[9] | CHEN Ying, SHEN Nadi, ZHANG Lu. Structure design and performance of fiber capacitive sensor [J]. Journal of Textile Research, 2024, 45(05): 43-50. |
[10] | LIANG Wenjing, WU Junxian, HE Yin, LIU Hao. Preparation and performance of ion sensors based on composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(04): 15-23. |
[11] | JIA Xiaoya, WANG Ruining, SUN Runjun. Preparation and stab-resistance of composites fabricated by aramid fabric impregnated with SiO2/poly(ethylene glycol)200/ multi-walled carbon nanotube shear thickening solution [J]. Journal of Textile Research, 2024, 45(04): 151-159. |
[12] | QING Xing, XIAO Qing, CHEN Bin, LI Mufang, WANG Dong. Research progress in fiber-based transistors [J]. Journal of Textile Research, 2024, 45(04): 33-40. |
[13] | WANG Bo, LIU Meiya, CHEN Mingna, SONG Zican, XIA Ming, LI Mufang, WANG Dong. Strain-sensing performance of polypyrrole/polyurethane filaments and application [J]. Journal of Textile Research, 2024, 45(02): 119-125. |
[14] | CHEN Lu, SHI Bao, WEI Sainan, JIA Lixia, YAN Ruosi. Energy storage performance of three-dimensional integrated knitted supercapacitor [J]. Journal of Textile Research, 2024, 45(02): 126-133. |
[15] | HE Yin, DENG Ling, LIN Meixia, LI Qianqian, XIAO Shuang, LIU Hao, LIU Li. Key technology development of intelligent and flexible mannequin for winter sports [J]. Journal of Textile Research, 2024, 45(02): 221-230. |
|