Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (06): 219-226.doi: 10.13475/j.fzxb.20230605002
• Comprehensive Review • Previous Articles Next Articles
WANG Jian1,2,3, ZHANG Rui2,3, ZHENG Yingying3, DONG Zhengmei3, ZOU Zhuanyong2,3()
CLC Number:
[1] | MA C, MA M G, SI C, et al. Flexible MXene-based composites for wearable devices[J]. Advanced Functional Materials, 2021, 31(22): 1-9 |
[2] | LIU H X, WANG L, LIU G M, et al. Recent progress in the fabrication of flexible materials for wearable sensors[J]. Biomaterials Science, 2022, 10: 614-632. |
[3] | SHEN B, ZHAI W, ZHENG W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548. |
[4] | WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65: 124-139. |
[5] | HUANG J, LI Z, MAO Y, et al. Progress and biomedical applications of MXenes[J]. Nano Select, 2021, 2(8): 1480-1508. |
[6] | LIPATOV A, LU H D, ALHABEB M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers[J]. Science Advances, 2018, 4(6): 1-8 |
[7] | LIPATOV A, GOAD A, LOES M J, et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes[J]. Matter, 2021, 4(4):1413-1427. |
[8] | 梁程, 程群峰. MXene纤维的制备、性能及应用研究进展[J]. 复合材料学报, 2022, 39(9): 4227-4243. |
LIANG Cheng, CHENG Qunfeng. Progress in preparation, properties and applications of MXene fiber[J]. Journal of Composites, 2022, 39(9):4227-4243. | |
[9] |
严小飞, 方杰, 朱晨凯, 等. 二维材料MXene(Ti3C2Tx)的制备、性能及其在纺织领域中的应用[J]. 现代纺织技术, 2022, 30(2): 1-8,35.
doi: 10.19398/j.att.202105030 |
YAN Xiaofei, FANG Jie, ZHU Chenkai, et al. Preparation and propersties of two-dimensional material MXene(Ti3C2Tx) and its application in textile field[J]. Advanced Textile Technology, 2022, 30(2):1-8,35.
doi: 10.19398/j.att.202105030 |
|
[10] | WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials, 2021.DOI:10.1002/adma.202103148 |
[11] | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
[12] | ZHOU C, ZHAO X, XIONG Y, et al. A review of etching methods of MXene and applications of MXene conductive hydrogels[J]. European Polymer Journal, 2022. DOI: 10.1016/j.eurpolymj.2022.111063. |
[13] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 1-17. |
[14] | GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
[15] | 丁姗姗, 娄耀元, 汪滨, 等. MXene的制备及应用进展[J]. 高分子通报, 2022(9):16-26. |
DING Shanshan, LOU Yaoyuan, WANG Bin, et al. Preparation and application of MXene[J]. Chinese Polymer Bulletin, 2022(9): 16-26. | |
[16] |
王杰, 郝玮, 胥生元, 等. 二维材料MXene的制备与电学性能研究进展[J]. 功能材料, 2022, 53(3): 3048-3057.
doi: 10.3969/j.issn.1001-9731.2022.03.007 |
WANG Jie, HAO Wei, XU Shengyuan, et al. Progress in the preparation and electrical properties of two-dimensional material MXene[J]. Function Materials, 2022, 53(3): 3048-3057. | |
[17] |
LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737.
doi: 10.1021/jacs.9b00574 pmid: 30821963 |
[18] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894-899.
doi: 10.1038/s41563-020-0657-0 pmid: 32284597 |
[19] | DONG H, XIAO P, JIN N, et al. Molten salt derived Nb2CTx MXene anode for Li-ion batteries[J]. Chem Electro Chem, 2021, 8(5): 957-962. |
[20] | 何世宇. 熔融盐-MXene的制备及其电化学性能研究[D]. 北京: 北京化工大学,2021:1-56. |
HE Shiyu. Preparation and electrochemical properties of molten salt-Mxene[D]. Beijing: Beijing University of Chemical Technology,2021:1-56. | |
[21] | LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T= OH, O) via alkali treat-ment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. |
[22] | ZHANG S, HUANG P, WANG J, et al. Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders[J]. The Journal of Physical Chemistry Letters, 2020, 11(4): 1247-1254. |
[23] | YANG S, ZHANG P, WANG F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system[J]. Angewandte Chemie, 2018, 130(47): 15717-15721. |
[24] | KUMAR J A, PRAKASH P, KRITHIGA T, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review[J]. Chemosphere, 2022, 286: 1-12. |
[25] | CHENG Y, ZHANG Y, LI Y, et al. Hierarchical Ni2P/Cr2CTx (MXene) composites with oxidized surface groups as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(15): 9324-9334. |
[26] | HE J, ZHANG Y, ZHOU R, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J]. Journal of Materiomics, 2020, 6(1): 86-101. |
[27] | HAMMOCK M L, CHORTOS A, TEE B C K, et al. 25th anniversary article: the evolution of electronic skin (E-skin): a brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997-6038. |
[28] | CHEN S, JIANG K, LOU Z, et al. Recent developments in graphene-based tactile sensors and E-skins[J]. Advanced Materials Technologies, 2018, 3(2): 1700248. |
[29] | MA Y, LIU N, LI L, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications, 2017, 8(1): 1-8. |
[30] | HE J, SHI F, LIU Q, et al. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. DOI:10.1016/j.colsurfa.2022.128676. |
[31] | YAN J, MA Y, JIA G, et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2022.DOI:10.1016/j.cej.2021.133458. |
[32] | LUO J, GAO S, LUO H, et al. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics[J]. Chemical Engineering Journal, 2021, 406:1-10 |
[33] | SU Z, XU D, LIU Y, et al. Advances in the synthesis of 2D MXenes[J]. ACS Applied Electronic Materials, 2023, 15(26):32002-32010. |
[34] | 王杰, 汪滨, 安泊儒, 等. 电容式柔性压力传感器的研究进展[J]. 北京服装学院学报(自然科学版), 2020, 40(1): 81-90. |
WANG Jie, WANG Bin, AN Boru, et al. Research progress of capacitive flexible pressure sensor[J]. Journal of Beijing Institute of Fashion Techno-logy(Natural Science Edition), 2020, 40(1): 81-90. | |
[35] | GOLABZAEI S, KHAJAVI R, SHAYANFAR H A, et al. Fabrication and characterization of a flexible capacitive sensor on PET fabric[J]. International Journal of Clothing Science and Technology, 2018, 30(5): 687-697. |
[36] | LEI D, LIU N, SU T, et al. Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism[J]. Advanced Materials, 2022.DOI:10.1002/adms.2110608. |
[37] | WANG S, DU X, LUO Y, et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2020. |
[38] | WANG P, LI G, LIU J, et al. Flexible, freestanding, ultrasensitive, and iontronic tactile sensing textile[J]. ACS Applied Electronic Materials, 2021, 3(5): 2195-2202. |
[39] |
ZHANG L, ZHANG S, WANG C, et al. Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics[J]. ACS Sensors, 2021, 6(7): 2630-2641.
doi: 10.1021/acssensors.1c00484 pmid: 34228442 |
[40] | LI X, HAO J, LIU R, et al. Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes[J]. Energy Storage Materials, 2020, 33: 62-70. |
[41] | UZUN S, SEYEDIN S, STOLTZFUS A L, et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 2019.DOI:10.1002/adfm.1905015. |
[42] | WAN Y, WANG Y, GUO C F. Recent progresses on flexible tactile sensors[J]. Materials Today Physics, 2017, 1: 61-73. |
[43] | LIU X, TONG J, WANG J, et al. BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors[J]. Journal of Materials Chemistry C, 2023, 11(14): 4614-4622. |
[44] | WANG S, SHAO H Q, LIU Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor[J]. Composites Science and Technology, 2021, 202(9):1-8. |
[45] |
WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11): 9533-9557.
doi: 10.1021/nn404614z pmid: 24079963 |
[46] | ZHANG J, ZHANG Y, LI Y, et al. Textile-based flexible pressure sensors: a review[J]. Polymer Reviews, 2022, 62(1): 65-94. |
[47] | HUANG J, HAO Y, ZHAO M, et al. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24774-24784. |
[48] | GUO J, ZHOU B, ZONG R, et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33589-33598. |
[49] | LIU L, WANG L, LIU X, et al. High-performance wearable strain sensor based on MXene@cotton fabric with network structure[J]. Nanomaterials, 2021.DOI:10.3390/nano11040889 |
[50] | YUAN L, ZHANG M, ZHAO T, et al. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network[J]. Sensors and Actuators A: Physical, 2020.DOI:10.1016/j.sna.2020.112192. |
[51] | YANG J, LI H, CHENG J, et al. Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring[J]. Journal of Materials Science, 2021, 56(24): 13859-13873. |
[52] | WANG L, JIANG K, SHEN G. Wearable, implantable, and interventional medical devices based on smart electronic skins[J]. Advanced Materials Technologies, 2021.DOI:10.1002/admt.2100107. |
[53] | LIU R, LI J, LI M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46446-46454. |
[54] | FU X, LI L, CHEN S, et al. Knitted Ti3C2Tx MXene based fiber strain sensor for human-computer inte-raction[J]. Journal of Colloid and Interface Science, 2021, 604: 643-649. |
[55] | ZHANG L, HE J, LIAO Y, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26631-26640. |
[56] | ZHANG C, LIU S, HUANG X, et al. A stretchable dual-mode sensor array for multifunctional robotic electronic skin[J]. Nano Energy, 2019, 62: 164-170. |
[57] | ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2020.127720. |
[58] |
LI T, CHEN L, YANG X, et al. A flexible pressure sensor based on an MXene-textile network structure[J]. Journal of Materials Chemistry C, 2019, 7(4): 1022-1027.
doi: 10.1039/c8tc04893b |
[1] | SONG Beibei, ZHAO Haoyue, LI Xinyu, QU Zhan, FANG Jian. Application of MXene-loaded cobalt-nitrogen doped carbon nanofibers in lithium-sulfur batteries [J]. Journal of Textile Research, 2024, 45(04): 24-32. |
[2] | LI Ganghua, WANG Hang, SHI Baohui, QU Lijun, TIAN Mingwei. Construction of flexible electronic fabric and its pressure sensing performance [J]. Journal of Textile Research, 2023, 44(02): 96-102. |
[3] | LI Yifei, ZHENG Min, CHANGZHU Ningzi, LI Liyan, CAO Yuanming, ZHAI Wangyi. Cotton knitted fabrics treated with two-dimensional transitional metal carbide Ti3C2Tx and property analysis [J]. Journal of Textile Research, 2021, 42(06): 120-127. |
[4] | PENG Laihu, WANG Luojun, HU Xudong, WU Zhenhui, YUAN Yanhong. Magnetic holding electronic needle selector and serial bus jacquard control system for circular knitting machine [J]. Journal of Textile Research, 2019, 40(01): 136-141. |
[5] | . Research progress of wearable technology in human health monitoring [J]. Journal of Textile Research, 2018, 39(10): 175-179. |
[6] | . Tensile strain sensing characteristics of carbon nanoyarns [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 14-18. |
[7] | . Strain sensing characteristics of carbon nanoyarns embedded in three-dimensional braided composites [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 11-18. |
[8] | ZHANG Guo-feng~(;);LI Ge~;YU Gao-hong~;ZHAO Yun~. Parameters designing of glove knitting mechanism based on human-computer interactions in collaboration [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(3): 69-72. |
|