Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (08): 225-233.doi: 10.13475/j.fzxb.20230703801
• Machinery & Equipment • Previous Articles Next Articles
HUANG Chao1,2, ZHANG Jianming2,3(), CHEN Hao2,3, LIU Weiqi2, ZHANG Haoyu2, GUO Meng2
CLC Number:
[1] | 丁欢, 胡建, 李涵, 等. 新经济常态下纺织行业发展的思考[J]. 中国纤检, 2023, 570(3): 35-37. |
DING Huan, HU Jian, LI Han, et al. Thinking on the development of textile industry under the new economic normal[J]. China Fiber Inspection, 2023, 570(3): 35-37. | |
[2] | 纺织行业经济发展形势与“十四五”发展重点[J]. 纺织检测与标准, 2021, 7(1): 45-48. |
Textile industry economic development situation and "fourteen five" development focus[J]. Textile Testing and Standards, 2021, 7(1): 45-48. | |
[3] | 刘凯琳. 经编织物在产业用领域的发展及应用[J]. 纺织导报, 2022, 43(5): 27. |
LIU Kailin. Development and application of warp-knitted technical textiles[J]. China Textile Leader, 2022, 43(5): 27. | |
[4] | 张洁, 徐楚桥, 汪俊亮, 等. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(9): 1-10. |
ZHANG Jie, XU Chuqiao, WANG Junliang, et al. Advancement in data-driven intelligent controlsystem for roboticized textile production[J]. Journal of Textile Research, 2022, 43(9): 1-10. | |
[5] | 朱启, 蒋高明, 丛洪莲, 等. 基于B/S结构的经编MES系统[J]. 纺织学报, 2013, 34(1): 128-132. |
ZHU Qi, JIANG Gaoming, CONG Honglian, et al. Development of manufacturing execution system of warp knitting based on B/S mode[J]. Journal of Textile Research, 2013, 34(1): 128-132. | |
[6] |
邵景峰, 贺兴时, 王进富, 等. 大数据环境下的纺织制造执行系统设计[J]. 机械工程学报, 2015, 51(5): 160-170.
doi: 10.3901/JME.2015.05.160 |
SHAO Jingfeng, HE Xingshi, WANG Jinfu, et al. Design of textile manufacturing execution system based on big data[J]. Journal of Mechanical Engineering, 2015, 51(5): 160-170.
doi: 10.3901/JME.2015.05.160 |
|
[7] | FACHINI R F, ESPOSTO K F, CAMARGO V C B. A framework for development of advanced planning and scheduling (APS) systems in glass container indu-stry[J]. Journal of Manufacturing Technology Manag-ement, 2018, 29(3): 570-587. |
[8] | 余建国, 木柏林. 面向机电制造企业的APS系统研究[J]. 机电工程技术, 2022, 51(9): 22-25. |
YU Jianguo, MU Bolin. Research on APS system for electromechanical manufacturing enterprises[J]. Electrical Engineering Technology, 2022, 51(9): 22-25. | |
[9] | SERRANO-RUIZ J C, MULA J, POLER R. Smart manufacturing scheduling: a literature review[J]. Journal of Manufacturing Systems, 2021, 61: 265-287. |
[10] | 卢颖涛. 针织企业染整车间调度方法研究[D]. 上海: 东华大学, 2019: 1-60. |
LU Yingtao. Research on dyeing production scheduling in dyeing and finishing workshop of knitting com-pany[D]. Shanghai: Donghua University, 2019: 1-60. | |
[11] | HUYNH N T, CHIEN C F. A hybrid multi-subpopulation genetic algorithm for textile batch dyeing scheduling and an empirical study[J]. Computers & Industrial Engineering, 2018, 125: 615-627. |
[12] | 蔡飞飞, 郗欣甫, 沈瑞超, 等. 经编车间过程监控与生产调度[J]. 东华大学学报(自然科学版), 2020, 46(6): 952-958. |
CAI Feifei, CHI Xinfu, SHEN Ruichao, et al. Process monitoring and production scheduling in warp knitting workshop[J]. Journal of Donghua University (Natural Science), 2020, 46(6): 952-958. | |
[13] | KIM J G, SONG S, JEONG B J. Minimising total tardiness for the identical parallel machine scheduling problem with splitting jobs and sequence-dependent setup times[J]. International Journal of Production Research, 2020, 58(6): 1628-1643. |
[14] | PANT M, SNASEL V, VERMA S. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2024, 9: 57757-57791. |
[15] | BANDYOPADHYAY S, BHATTACHARYA R. Solving multi-objective parallel machine scheduling problem by a modified NSGA-II[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6718-6729. |
[16] | WANG J A, PAN R, GAO W, et al. An automatic scheduling method for weaving enterprises based on genetic algorithm[J]. Journal of The Textile Institute, 2015, 106(12): 1377-1387. |
[1] | LU Yan, HONG Yan, FANG Jian. Research progress on applications of machine learning in flexible strain sensors in context of material intelligence [J]. Journal of Textile Research, 2024, 45(05): 228-238. |
[2] | MA Chuangjia, QI Lizhe, GAO Xiaofei, WANG Ziheng, SUN Yunquan. Stitch quality detection method based on improved YOLOv4-Tiny [J]. Journal of Textile Research, 2023, 44(08): 181-188. |
[3] | WANG Bin, LI Min, LEI Chenglin, HE Ruhan. Research progress in fabric defect detection based on deep learning [J]. Journal of Textile Research, 2023, 44(01): 219-227. |
[4] | LÜ Wentao, LIN Qiqi, ZHONG Jiaying, WANG Chengqun, XU Weiqiang. Research progress of image processing technology for fabric defect detection [J]. Journal of Textile Research, 2021, 42(11): 197-206. |
[5] | WANG Yiwen, LUO Ronglei, KANG Yuzhe. Automatic measurement of key dimensions for Han-style costumes based on use of convolutional neural network [J]. Journal of Textile Research, 2020, 41(12): 124-129. |
[6] | SUN Jie, DING Xiaojun, DU Lei, LI Qinman, ZOU Fengyuan. Research progress of fabric image feature extraction and retrieval based on convolutional neural network [J]. Journal of Textile Research, 2019, 40(12): 146-151. |
[7] | YANG Jingzhao, JIANG Xiuming, DONG Jiuzhi, CHEN Yunjun, MEI Baolong. Prediction method of integrated piercing pressure parameters based on machine learning [J]. Journal of Textile Research, 2019, 40(08): 157-163. |
[8] | TAO Kaixin, YU Chengbing, HOU Qi'ao, WU Congjie, LIU Yinfeng. Wet-steaming dyeing prediction model of cotton knitted fabric with reactive dye based on least squares support vector machine [J]. Journal of Textile Research, 2019, 40(07): 169-173. |
[9] | WANG Yonglin;WANG Dongyun. Clustering Research of fabric deformation comfort using bi-swarm PSO algorithm [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 60-64. |
|