Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (04): 8-14.doi: 10.13475/j.fzxb.20230906101
• Academic Salon Column for New Insight of Textile Science and Technology: Green Functional and Smart Textiles • Previous Articles Next Articles
SHI Jilei1,2, TANG Chunxia1,2, FU Shaohai1,2, ZHANG Liping1,2()
CLC Number:
[1] | JI Chao, WANG Ying, YE Zhenqiang, et al. Ice-templated MXene/Ag epoxy nanocomposites as high-performance thermal management materials[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24298-24307. |
[2] | DUAN Bo, GAO Huimin, HE Meng, et al. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 19933-19942. |
[3] | JIANG Feng, HSIEH You Lo. Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2825-2834. |
[4] | 陈彩虹. 纳米纤维素基气凝胶的制备及其隔热性能的研究[D]. 杭州: 浙江理工大学, 2022: 23. |
CHEN Caihong. Preparation and thermal insulation of nanocellulose based aerogel[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:23. | |
[5] |
GUO Limin, CHEN Zhilin, LYU Shaoyi, et al. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy[J]. Carbohydrate Polymers, 2018, 179: 333-340.
doi: S0144-8617(17)31118-9 pmid: 29111059 |
[6] |
SONG Jianwei, CHEN Chaoji, YANG Zhi, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano, 2018, 12(1): 140-147.
doi: 10.1021/acsnano.7b04246 pmid: 29257663 |
[7] | YANG Jin, XIA Yunfei, XU Peng, et al. Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation[J]. Cellulose, 2018, 25(6): 3533-3544. |
[8] |
BERND Wicklein, ANDRAZ Kocjan, et al. GERMAN Salazar Alvarez,Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10(3): 277-283.
doi: 10.1038/nnano.2014.248 pmid: 25362476 |
[9] | 穆梦雅. 机械柔韧纳米纤维素气凝胶的结构调控及应用性能研究[D]. 杭州: 浙江理工大学, 2022: 21-22. |
MU Mengya. Study on structure regulation and applied pr operties of mechanically flexible nanocellulose aerogel[D]. Hangzhou: Zhejiang Sci-Tech University, 2022:21-22. | |
[10] | 张君妍. 柔性隔热细菌纤维素基气凝胶材料的结构设计与性能研究[D]. 上海: 东华大学, 2020: 88-89. |
ZHANG Junyan. Structural design and properties of flexible thermal insulation bacterial cellulose based aerogel materials[D]. Shanghai: Donghua University, 2020:88-89. | |
[11] | 王世贤, 降帅, 李萌萌, 等. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(3):33-38. |
WANG Shixian, JIANG Shuai, LI Mengmeng, et al. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent[J]. Journal of Textile Research, 2020, 41(3):33-38. | |
[12] | FENG Jingduo, LE Duyen, NGUYEN Son T. Silica@cellulose hybrid aerogels for thermal and acoustic insulation applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 298-305. |
[13] | DO Nga H N, TRAN Viet T, TRAN Quang B M. Recycling of pineapple leaf and cotton waste fibers into heat-insulating and flexible cellulose aerogel composites[J]. Journal of Polymers and the Environment, 2021, 29(4):1112-1121. |
[14] | HUANG Jiali, WANG Xin, GUO Wenwen, et al. Eco-friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022. DOI: 10.1016/j.jtice.2021.104159. |
[1] | LI Ping, ZHU Ping, LIU Yun. Preparation and properties of flame-retardant polyester-cotton fabrics with chitosan-based intumescent flame retardant system [J]. Journal of Textile Research, 2024, 45(02): 162-170. |
[2] | SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73. |
[3] | ZHANG Qingsong, ZHANG Yingchen, QIU Zhenzhong, WU Hongyan, ZHANG Zhiru, ZHANG Xia'nan. Mechanism research and development of moisture absorbing cool feeling fabrics [J]. Journal of Textile Research, 2022, 43(02): 132-139. |
[4] | LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8. |
[5] | LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171. |
[6] | XUE Rujing, MO Xiaoxuan, LIU Fujuan. Structure and properties of four different kinds of domestic cocoon varieties [J]. Journal of Textile Research, 2021, 42(10): 41-46. |
[7] | SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77. |
[8] | WANG Shixian, JIANG Shuai, LI Mengmeng, LIU Lifang, ZHANG Li. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent [J]. Journal of Textile Research, 2020, 41(03): 33-38. |
[9] | . Surface modification of Iron oxide yellow and its application in ultra-high molecular weight polyethylene [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 86-90. |
[10] | . Trsting of thermal conductivity of fiber based on transient plane heat source method [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 18-23. |
[11] | . Application of gray clustering analysis in evaluation of fabric thermal performance [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 64-67. |
[12] | . Preparation of activated carbon fabric and its thermal insulation performance [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 43-0. |
[13] | . Influence on sericin fixation by GA on properties of cocoon silk [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 57-0. |
[14] | . Research on novel Ag-loaded antibacterial cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 82-85. |
[15] | ZHANG Ruquan;ZHOU Shuangxi;TAO Rong;LIN Jianyong. Testing device of fabric dynamic thermal conductivity based on MCU [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(3): 122-126. |
|