Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (02): 28-35.doi: 10.13475/j.fzxb.20231003901
• Fiber Materials • Previous Articles Next Articles
WEI Yihui1, ZHANG Yujing1, DENG Huihua2, DENG Qinghui2, CHEN Haoqiang2, ZHANG Xuzhen3, YU Bin1, ZHU Feichao1,4,5()
CLC Number:
[1] | YANG J J, ZHANG X F, ZHANG X, et al. Infrared adaptive materials: beyond the visible: bioinspired infrared adaptive materials[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202170105. |
[2] |
DAVID M, DISNAN D, LARDSCHNEIDER A, et al. Structure and mid-infrared optical properties of spin-coated polyethylene films developed for integrated photonics applications[J]. Optical Materials Express, 2022, 12(6): 2168-2180.
doi: 10.1364/OME.458667 |
[3] | SHEN Y L, LIU Z Y, JIANG G J, et al. Fabrication of light-weight ultrahigh molecular weight polyethylene films with hybrid porous structure and the thermal insulation properties[J]. Journal of Applied Polymer Science, 2022. DOI: 10.1002/app.52403. |
[4] |
TONG J K, HUNG X P, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6): 769-778.
doi: 10.1021/acsphotonics.5b00140 |
[5] |
PO C H, ALEX Y S, PETER B C, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
doi: 10.1126/science.aaf5471 |
[6] |
PENG Y C, CHEN J, SONG Y A, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112.
doi: 10.1038/s41893-018-0023-2 |
[7] |
KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments[J]. Building and Environment, 2018, 145: 85-95.
doi: 10.1016/j.buildenv.2018.09.021 |
[8] | HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700895. |
[9] | CAI L L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201802152. |
[10] |
CAI L, SONG A Y, WU P, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications, 2017, 8(1): 496.
doi: 10.1038/s41467-017-00614-4 pmid: 28928427 |
[11] |
CATRYSSE P B, SONG A Y, FAN S. Photonic structure textile design for localized thermal cooling based on a fiber blending scheme[J]. ACS Photonics, 2016, 3(12): 2420-2426.
doi: 10.1021/acsphotonics.6b00644 |
[12] |
CAI L, PENG Y, XU J, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 2019, 3(6): 1478-1486.
doi: 10.1016/j.joule.2019.03.015 |
[13] | DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: a review[J]. Physics of Fluids, 2019. DOI: 10.1063/1.5116336. |
[14] | HIREMATH N, BHAT G. Melt blown polymeric nanofibers for medical applications: an overview[J]. Nanoscience and Technology, 2015, 2(1): 1-9. |
[15] |
YALCIN Y, GAJANAN S B. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 780-793.
doi: 10.1108/IJCST-09-2015-0099 |
[16] |
YALCIN Y, GAJANAN S B. Porosity and barrier properties of polyethylene meltblown nonwovens[J]. The Journal of The Textile Institute, 2017, 108(6): 1035-1040.
doi: 10.1080/00405000.2016.1218109 |
[17] | XU Y, ZHANG X, HAO X, et al. Micro/nanofibrous nonwovens with high filtration performance and radiative heat dissipation property for personal protective face mask[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130175. |
[18] |
LIU X Y, LIANG B, LONG J P. Preparation of novel thick sheet graphene and its effect on the properties of polyolefins with different crystallinities[J]. Polymer Bulletin, 2021, 79(8): 5955-5974.
doi: 10.1007/s00289-021-03791-x |
[19] |
GAHLEITNER M, WANG J, PRADES F, et al. Gelation and crystallization phenomena in polyethylene plastomers modified with waxes[J]. Polymers, 2021, 13(13): 2147.
doi: 10.3390/polym13132147 |
[20] |
MORICI E, DL B A, ARRIGO R, et al. Double bond-functionalized POSS: dispersion and crosslinking in polyethylene-based hybrid obtained by reactive proce-ssing[J]. Polymer Bulletin, 2016, 73: 3385-3400.
doi: 10.1007/s00289-016-1662-y |
[21] | BAKSHI A K, GHOSH A K. Processability and physico-mechanical properties of ultrahigh-molecular-weight polyethylene using low-molecular-weight olefin wax[J]. Polymer Engineering & Science, 2022, 62(7): 2335-2350. |
[22] |
ANDREEV M, NICHOLSOND, KOTULA A, et al. Rheology of crystallizing LLDPE.[J]. Journal of Rheology, 2020, 64(6): 1379-1389.
doi: 10.1122/8.0000110 |
[23] |
SEPIDEH B, MARYAM M, MASOUD H, et al. Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films[J]. Iranian Polymer Journal, 2017, 26(11): 885-893.
doi: 10.1007/s13726-017-0574-5 |
[24] |
GUMEDE, THANDI P, LUYT, et al. Plasticization and cocrystallization in LLDPE/wax blends[J]. Journal of Polymer Science, Part B. Polymer Physics, 2016, 54(15): 1469-1482.
doi: 10.1002/polb.v54.15 |
[25] |
MOSOABISANE M F T, LUYT A S, VAN S C. Comparative experimental and modelling study of the thermal and thermo-mechanical properties of LLDPE/wax blends[J]. Journal of Polymer Research, 2022, 29(7): 296.
doi: 10.1007/s10965-022-03136-w |
[26] |
SALEM S M, BEHBEHANI M H, HAZZA A J, et al. Study of the degradation profile for virgin linear low-density polyethylene (LLDPE) and polyole-fin (PO) plastic waste blends[J]. Journal of Material Cycles and Waste Management, 2019, 21(5): 1106-1122.
doi: 10.1007/s10163-019-00868-8 |
[27] | 张宇静, 陈连节, 张思东, 等. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(2): 55-62. |
ZHANG Yujing, CHEN Lianjie, ZHANG Sidong, et al. Preparation of high melt index polylactic acid masterbatch andspinnability of its meltblown mate-rials[J]. Journal of Textile Research, 2023, 44(2): 55-62. |
[1] | ZHAI Qian, ZHANG Heng, ZHAO Ke, ZHU Wenhui, ZHEN Qi, CUI Jingqiang. Laminated design and water quick-drying performance of biomimetic bamboo-tube fibrous humidifying materials [J]. Journal of Textile Research, 2024, 45(02): 1-10. |
[2] | XIAO Hao, SUN Hui, YU Bin, ZHU Xiangxiang, YANG Xiaodong. Preparation of chitosan-SiO2 aerogel/cellulose/polypropylene composite spunlaced nonwovens and adsorption dye performance [J]. Journal of Textile Research, 2024, 45(02): 179-188. |
[3] | FANG Chunyue, LIU Zixuan, JIA Lixia, YAN Ruosi. Ballistic response of duoplasmatron-modified polyethylene composites [J]. Journal of Textile Research, 2024, 45(02): 77-84. |
[4] | YANG Qi, LIU Gaohui, HUANG Qiwei, HU Rui, DING Bin, YU Jianyong, WANG Xianfeng. Study on correlation between charge storage and filtration performance of melt-blown polylactic acid/polyvinylidene fluoride electret air filter materials [J]. Journal of Textile Research, 2024, 45(01): 12-22. |
[5] | LIU Jinxin, ZHOU Yuxuan, ZHU Borong, WU Haibo, ZHANG Keqin. Properties and filtration mechanism of thermal bonding polyethylene/polypropylene bicomponent spunbond nonwovens [J]. Journal of Textile Research, 2024, 45(01): 23-29. |
[6] | WANG Rongchen, ZHANG Heng, ZHAI Qian, LIU Ruiyan, HUANG Pengyu, LI Xia, ZHEN Qi, CUI Jingqiang. Preparation and fast wettability of polylactic acid micro-nanofibrous dressing by melt blowing process [J]. Journal of Textile Research, 2024, 45(01): 30-38. |
[7] | XIE Yanxia, ZHANG Weiqiang, XU Yaning, ZHAO Shuhan, YIN Wenxuan, ZHANG Wenqiang, HAN Xu. Migration properties of commercial polyethylene terephthalate staple fiber oligomers and influencing factors thereof [J]. Journal of Textile Research, 2024, 45(01): 65-73. |
[8] | YAO Chenxi, WAN Ailan. Thermal and moisture comfort of polybutylene terephthalate/polyethylene terephthalate weft-knitted sports T-shirt fabrics [J]. Journal of Textile Research, 2024, 45(01): 90-98. |
[9] | LIU Ya, ZHAO Chen, ZHUANG Xupin, ZHAO Yixia, CHENG Bowen. Fabrication and properties of metallocene polyethylene spunbond filament based on Polyflow simulation [J]. Journal of Textile Research, 2023, 44(12): 1-9. |
[10] | MENG Na, WANG Xianfeng, LI Zhaoling, YU Jianyong, DING Bin. Research progress in electret technology for melt-blown nonwovens [J]. Journal of Textile Research, 2023, 44(12): 225-232. |
[11] | SUN Hui, CUI Xiaogang, PENG Siwei, FENG Jiangli, YU Bin. Preparation of polylactic acid/magnetic metal organic frame material composite melt-blown fabrics and air filtration performance [J]. Journal of Textile Research, 2023, 44(12): 26-34. |
[12] | LIU Juntao, SUN Ting, TU Hu, HU Min, ZHANG Ruquan, SUN Lei, LUO Xia, JI Hua. Optimization of plasma cold pad-batch degreasing/bleaching process for cotton spunlace nonwoven by response surface method [J]. Journal of Textile Research, 2023, 44(11): 132-141. |
[13] | TAN Jing, SHI Xin, YU Jingchao, CHENG Lisheng, YANG Tao, YANG Weimin. Preparation and electrical conductivity of carbon nanocoating on glass fiber surface by polymer pyrolysis [J]. Journal of Textile Research, 2023, 44(11): 36-44. |
[14] | ZHANG Guangzhi, YANG Fusheng, FANG Jin, YANG Shun. One bath flame retardant finishing of polylactic acid nonwoven by phytic acid/chitosan/boric acid [J]. Journal of Textile Research, 2023, 44(10): 120-126. |
[15] | QIAN Yaowei, YIN Lianbo, LI Jiawei, YANG Xiaoming, LI Yaobang, QI Dongming. Preparation and properties of flame retardant cotton fabrics by layer-by-layer assembly of polyvinylphosphonic acid and polyethylene polyamine [J]. Journal of Textile Research, 2023, 44(09): 144-152. |
|