Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (02): 67-76.doi: 10.13475/j.fzxb.20231005001
• Textile Engineering • Previous Articles Next Articles
JU Ao1,2, XIANG Weihong1,2, CUI Yanchao3, SUN Ying1,2(), CHEN Li1,2
CLC Number:
[1] | 许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016, 37 (12): 24-28. |
XU Jingxian, LIU Li, LI Jun. Development and perfor mance evaluation of electrically-heated textile based on silver-coated yarn[J]. Journal of Textile Research, 2016, 37 (12): 24-28. | |
[2] | 谌广昌, 纪双英, 赵文明, 等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展, 2019, 10 (2): 201-205. |
CHEN Guangchang, JI Shuangying, ZHAO Wenming, et al. Experimental study on hheating pad of helicopter ro-tor deicing system[J]. Progress in Aviation Engineering, 2019, 10(2):201-205. | |
[3] | YUE Chengming, ZHANG Yingying, LU Weibang, et al. Realizing the curing of polymer composite materials by using electrical resistance heating: a review[J]. Composite Part A, 2022. DOI: 10.1016/j.compositesa.2022.107181. |
[4] |
HAN Shuangye, WEI Haibin, HAN Leilei, et al. Durability and electrical conductivity of carbon fiber cloth/ethylene propylene diene monomer rubber composite for active deicing and snow melting[J]. Polymers, 2019, 11 (12): 2051.
doi: 10.3390/polym11122051 |
[5] | LEE J S, JO H, CHOE H S, et al. Electro-thermal heating element with a nickel-plated carbon fabric for the leading edge of a wing-shaped composite applica-tion[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2022.115510. |
[6] | 方纾, 刘皓, 刘莉. 柔性电加热元件与智能加热服装服饰研究进展[J]. 北京服装学院学报, 2019, 39(2): 83-94. |
FANG Shu, LIU Hao, LIU Li. Research progress of flexible electric heating element and smart heating garments[J]. Joumal of Beijing Institute of Clothing Technology, 2019, 39(2): 83-94. | |
[7] |
SYED T A H, ANURA F, MUHAMMAD M. Thermo-mechanical behavior of stainless steel knitted struc-tures[J]. Heat Mass Transfer, 2015, 52: 1-10.
doi: 10.1007/s00231-015-1573-8 |
[8] | ROH J S, KIM S. All-fabric intelligent temperature regulation system for smart clothing applications[J]. Journal of lntelligent Material Systems and Structures, 2016, 27: 1165-1175. |
[9] |
BAI Yanyan, LI Hongxia, GAN Shijin, et al. Flexible heating fabrics with temperature perception based on fine copper wire and fusible interlining fabrics[J]. Measurement, 2018, 122: 192-200.
doi: 10.1016/j.measurement.2018.03.021 |
[10] | 戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8): 1997-2004. |
DAI Haijun, LI Jialu, SUN Ying, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy electrically heated composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8):1997-2004. | |
[11] |
WU Qian, HU Jinlian. Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles[J]. Composites Part B, 2016, 107:59-66.
doi: 10.1016/j.compositesb.2016.09.068 |
[12] |
MORAES M R, ALVES A C, TOPTAN F, et al. Glycerol/pedot:pss coated woven fabric as flexible heating element on textiles[J]. Journal of Materials Chemistry C, 2017, 5:3807-3822.
doi: 10.1039/C7TC00486A |
[13] | UHLIG Kai, BITTRICH Lars, SPICKENHEUER Axel, et al. Waviness and fiber volume content analysis in continuous carbon fiber reinforced plastics made by tailored fiber placement[J]. Composite Structures, 2019. DOI: 10.1016/j.compstruct.2019.110910. |
[14] | 张艳明, 姜亚明, 邱冠雄, 等. 纬编双轴向多层衬纱织物的双半球成型性[J]. 纺织学报, 2005, 26 (3): 54-56. |
ZHANG Yanming, JIANG Yaming, QIU Guanxiong, et al. Formability of multi-layered biaxial weft knitted fabrics on double hemisphere[J]. Journal of Textile Research, 2005, 26 (3): 54-56. | |
[15] | JIAO Wei, CHEN Li, XIE Junbo, et al. Deformation mechanisms of 3d ltl woven preforms in hemisphere forming tests[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2021.115156. |
[16] |
RASHIDI A, MILANI A S. Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders[J]. Composite Part A, 2018, 105: 300-309.
doi: 10.1016/j.compositesa.2017.11.023 |
[17] |
LABANIEH AR, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composite Part A, 2018, 107: 432-446.
doi: 10.1016/j.compositesa.2018.01.018 |
[18] | MEI Ming, HE Yujia, YANG Xujing, et al. Shear deformation characteristics and defect evolution of the biaxial ±45° and 0/90° glass non-crimp fabrics[J]. Composites Science and Technology, 2020. DOI: 10.1016/j.compscitech.2020.108137. |
[1] | JIA Liping, LI Ming, LI Weilong, RAN Jianhua, BI Shuguang, LI Shiwei. Strain-sensing and electrothermal difunctional core-spun yarn based on long silver nanowires [J]. Journal of Textile Research, 2023, 44(10): 113-119. |
[2] | YAO Mingyuan, LIU Ningjuan, WANG Jianing, XU Fujun, LIU Wei. Electrothermal properties of functionalization carbon nanotube composite films and films twisted yarns [J]. Journal of Textile Research, 2022, 43(05): 86-91. |
|