Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (02): 85-92.doi: 10.13475/j.fzxb.20231005501
• Textile Engineering • Previous Articles Next Articles
NAN Jingjing1,2, DU Mingjuan3, MENG Jiaguang1,2, YU Lingjie1,2, ZHI Chao1,2()
CLC Number:
[1] | JAYAKUMARI V G, SHAMSUDEEN R K, RAJESWARI R, et al. Viscoelastic and acoustic characterization of polyurethane-based acoustic absorber panels for underwater applications[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/app.47165. |
[2] | 王育人, 缪旭弘, 姜恒, 等. 水下吸声机理与吸声材料[J]. 力学进展, 2017, 47(1): 92-121. |
WANG Yuren, MU Xuhong, JIANG Heng, et al. Underwater sound absorption mechanism and sound-absorbing materials[J]. Advances in Mechanics, 2017, 47(1): 92-121. | |
[3] | LEE Dongwoo, JANG Yeongtae, PARK Jeonghoon, et al. Underwater stealth metasurfaces composed of split-orifice-conduit hybrid resonators[J]. Journal of Applied Physics, 2021. DOI: 10.1063/5.0042246. |
[4] |
MENG H, WEN J, ZHAO H, et al. Analysis of absorption performances of anechoic layers with steel plate backing[J]. Journal of the Acoustical Society of America, 2012, 132(1): 69-75.
doi: 10.1121/1.4728198 pmid: 22779456 |
[5] | WANG Zonghui, HUANG Yixing, ZHANG Xiaowei, et al. Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb[J], Journal of Sound and Vibration, 2020. DOI:10.1016/j.jsv.2020.115375. |
[6] |
JUHYUK Park, SEI Hyun Yang, KYUNG Suh Minn. Design and numerical analysis of syntactic hybrid foam for superior sound absorption[J]. Materials and Design, 2018, 142: 212-220.
doi: 10.1016/j.matdes.2018.01.040 |
[7] | FU Y, KABIR I I, YEOH G H, et al. A review on polymer-based materials for underwater sound absorp-tion[J]. Polymer Testing, 2021. DOI:10.1016/j.polymertesting.2021.107115. |
[8] | 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975, 18(1): 38-50. |
MA Dayou. Theory and design of microperforated plate sound-absorbing structures[J]. Chinese Science, 1975, 18(1): 38-50. | |
[9] | YU W, ZHANG X, DONG Q. Application of Microperforated-panel absorber in communication products[J]. Journal of Applied Mathematics & Physics, 2018, 6(1): 51-57. |
[10] |
ZHAO X, FAN X. Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates[J]. Applied Acoustics, 2015, 88: 123-128.
doi: 10.1016/j.apacoust.2014.08.015 |
[11] | 王泽锋, 胡永明, 倪明, 等. 微穿孔板吸声结构水下应用研究[J]. 应用声学, 2008, 27(3): 161-166. |
WANG Zefeng, HU Yongming, NI Ming, et al. Study on underwater application of microperforated plate acoustic structure[J]. Applied Acoustics, 2008, 27(3): 161-166.
doi: 10.1016/0003-682X(89)90058-3 |
|
[12] | 罗忠, 朱锡, 梅志远, 等. 水下微穿孔吸声体结构设计与试验研究[J]. 声学学报, 2010, 35(3): 329-334. |
LUO Zhong, ZHU Xi, MEI Zhiyuan, et al. Structural design and experimental study of underwater microperforated acoustic absorbers[J]. Journal of Acoustics, 2010, 35(3): 329-334. | |
[13] | 李晨曦, 徐颖, 李旦望. 羊毛纤维对薄微穿孔板吸声性能的影响[J]. 西北工业大学学报, 2011, 29(2): 263-267. |
LI Chenxi, XU Ying, LI Danwang. Influence of wool fiber on the acoustic performance of thin microperforated plates[J]. Journal of Northwestern Polytechnical University, 2011, 29(2): 263-267. | |
[14] | BAZLI M, LI Y L, ZHAO X L, et al. Durability of seawater and sea sand concrete filled filament wound FRP tubes under seawater environments[J]. Composites Part B Engineering, 2020. DOI: 10.1016/j.compositesb.2020.108409. |
[15] | FENG G Y, ZHU D J, GUO S C, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J]. Cement and Concrete Composites, 2022. DOI: 10.1016/j.cemconcomp.2022.104758. |
[16] | YI Y, ZHU D, RAHMAN Z, et al. Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.110115. |
[17] | SUKUR E F, ONAL G. Long-term Salt-water durability of GNPs reinforced basalt-epoxy multiscale composites for marine applications[J]. Tribology International, 2021. DOI: 10.1016/j.triboint.2021.106910. |
[18] | LI Hailin, ZHANG Kaifu, FAN Xintian, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites[J]. Composites Part B-Engineering, 2019. DOI:10.1016/j.compositesb.2019.106910. |
[19] | 文庆珍, 肖玲, 李瑜, 等. TZLD橡胶基体水声吸声复合材料在海水中的寿命预测[J]. 高分子材料科学与工程, 2017, 33(2):100-104. |
WEN Qingzhen, XIAO Ling, LI Yu, et al. Lifetime prediction of TZLD rubber matrix hydroacoustic acoustic composites in seawater[J]. Polymer Materials Science and Engineering, 2017, 33(2):100-104. | |
[20] | 南静静, 杜明娟, 孟家光, 等. 间隔织物/聚氨酯水声材料的海水老化研究[J]. 纺织科学与工程学报, 2023, 40(4):53-58. |
NAN Jingjing, DU Mingjuan, MENG Jiaguang, et al. Study on seawater aging of spacer fabric/polyurethane underwater sound-absorbing material[J]. Journal of Textile Science and Engineering, 2023, 40(4):53-58. |
[1] | HUANG Jinbo, SHAO Lingda, ZHU Chengyan. Preparation of carbonized three-dimensional spacer cotton fabric and its electrical heating properties [J]. Journal of Textile Research, 2023, 44(04): 139-145. |
[2] | HUANG Jinbo, ZHU Chengyan, ZHANG Hongxia, HONG Xinghua, ZHOU Zhifang. Design of three-dimensional spacer fabrics based on rapier looms [J]. Journal of Textile Research, 2021, 42(06): 166-170. |
|