Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (02): 246-254.doi: 10.13475/j.fzxb.20231006201
• Machinery & Equipment • Previous Articles Next Articles
PENG Laihu1,2, HOU Liangmei1,2, QI Yubao1,2(), RU Xin1, LIU Jianting2
CLC Number:
[1] | 李杨, 彭来湖, 刘建廷, 等. 基于横向振动频率的轴向运动纱线张力测量[J]. 纺织学报, 2023, 44(6): 72-77. |
LI Yang, PENG Laihu, LIU Jianting, et al. Measurement of yarn tension in axial direction based ontransverse vibration frequency[J]. Journal of Textile Research, 2023, 44(1): 72-77. | |
[2] | 沈丹峰, 付茂文, 赵刚, 等. 融合在线辨识的新型神经网络经纱张力控制[J]. 西安工程大学学报, 2022, 36(2): 16-24. |
SHEN Danfeng, FU Maowen, ZHAO Gang, et al. A novel neural network warp tension control combined with online identification[J]. Journal of Xi'an Polytechnic University, 2022, 36(2): 16-24. | |
[3] | 张东剑, 甘学辉, 杨崇倡, 等. 纺丝过程中非接触式纤维张力检测技术研究进展[J]. 纺织学报, 2022, 43(11): 188-194. |
ZHANG Dongjian, GAN Xuehui, YANG Chongchang, et al. Research progress of non-contact fiber tension detection technology in spinning process[J]. Journal of Textile Research, 2022, 43(11): 188-194. | |
[4] | 谈渊. 基于小波去噪的涤纶长丝在线张力检测研究[D]. 上海: 东华大学, 2023:78. |
TAN Yuan. Research on online tension detection of polyester filament based on wavelet denoising[D]. Shanghai: Donghua University, 2023: 78. | |
[5] | 邓敏, 高检法, 杨云冲, 等. 纱线张力测试装置的设计与数据分析[J]. 轻工科技, 2022, 38(5): 18-21. |
DENG Min, GAO Jianfa, YANG Yunchong, et al. Design and data analysis of yarn tension test device[J]. Light Industry Science and Technology, 2022, 38(5): 18-21. | |
[6] | ZHANG Dongjian, TAN Yuan, MA Qihua, et al. Real-time tension estimation in the spinning process based on the natural frequencies extraction of the Polyester Filament Yarn[J]. Measurement, 2021. doi:10.1016/j.measurement.2021.110514. |
[7] | MIKOLAJCZYK Z. Model of the feeding process of anisotropic warp knitted fabrics[J]. Fibres and Textiles in Eastern Europe, 2003, 11(2): 58-62. |
[8] |
JAFARIPANAH M, AL-HASHIMI B M, WHITE N M, et al. Application of analog adaptive filters for dynamic sensor compensation[J]. IEEE Transaction On Instrumentation and Measurement, 2005, 54(1): 245-251.
doi: 10.1109/TIM.2004.839763 |
[9] | NURWAHA Deogratias, WANG Xinhou, et al. Prediction of rotor spun yarn strength using adaptive neuro-fuzzy inference system and linear multiple regression methods[J]. Journal of Donghua University, 2008, 25(1): 48-52. |
[10] |
MWASIAGI Josphat Igadwa, HUANG Xiubao, WANG Xinhou, et al. Performance of neural network algorithms during the prediction of yarn breaking elongation[J]. Fibers and Polymers, 2008, 9(1): 80-86.
doi: 10.1007/s12221-008-0013-5 |
[11] |
CHIU Shih Hsuan, LU Chuan Pin, et al. Noise separation of the yarn tension signal on twister using FastICA[J]. Mechanical Systems and Signal Processing, 2005, 19: 1326-1336.
doi: 10.1016/j.ymssp.2005.02.005 |
[12] | SHENG Xiaowei, FANG Xiaoyan, XU Yang, et al. Noise source identification of the carpet tufting machinebased on the single channel blind source separation andtime-frequency signal analysis[J]. Hindawi, 2022. doi:10.1155/2022/8991787. |
[13] | 陈恩来. 经编纱线动态张力特性及补偿技术[J]. 中小企业管理与科技, 2020(5): 176-177. |
CHEN Enlai. Characteristics and compensation technology of the dynamic tension of warp knitted yarn[J]. Management & Technology of SME, 2020(5): 176-177. | |
[14] | 李杨, 彭来湖, 郑秋扬, 等. 基于分数阶模型的纱线蠕变性能模拟与预测[J]. 纺织学报, 2022, 43(11): 46-51. |
LI Yang, PENG Laihu, ZHENG Qiuyang, et al. Simulation and prediction of yarn creep performance based on fractional model[J]. Journal of Textile Research, 2022, 43(11): 46-51. | |
[15] | 孙帅, 缪旭红, 张琦, 等. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(3): 51-55. |
SUN Shuai, MIAO Xuhong, ZHANG Qi, et al. Yarn tension fluctuation on high-speed warp knitting ma-chine[J]. Journal of Textile Research, 2020, 41(3): 51-55. |
[1] | . Transverse nonlinear-vibration of axially moving yarn strand [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 37-0. |
|