Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (02): 21-27.doi: 10.13475/j.fzxb.20231008801
• Fiber Materials • Previous Articles Next Articles
SHI Yulei1,2, QU Lianyi1,2, LIU Jianglong1,2, XU Yingjun1,2()
CLC Number:
[1] | 姚萍, 江文, 王江, 等. 接枝壳寡糖抗菌粘胶纤维的制备及其抗菌性与染色效果[J]. 纺织学报, 2018, 39(4): 9-13. |
YAO Ping, JIANG Wen, WANG Jiang, et al. Preparation and antibacterial and dyeing properties of chitosan grafted antibacterial viscose fiber[J]. Journal of Textile Research, 2018, 39(4): 9-13. | |
[2] |
KANTOUCH A, ELSAYED A A, SALAMA M, et al. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric[J]. International Journal of Biological Macromolecules, 2013, 62: 603-607.
doi: 10.1016/j.ijbiomac.2013.09.021 pmid: 24076193 |
[3] | 中国化学纤维工业学会. 关注2022年中国化纤行业运行分析与2023年展望[E/OL]. 2023-03-15. https://www.cofa.com.cn/19/202303/3481.html. |
China Chemical Fibers Association. Operation analysis of China's chemical fiber industry in 2022 and outlook in 2023[E/OL]. 2023-03-15. https://www.ccfa.com.cn/19/202303/3481.html. | |
[4] |
ZHENG J, SONG F, WANG X L, et al. In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles[J]. Cellulose, 2014, 21(4): 3097-3105.
doi: 10.1007/s10570-014-0324-1 |
[5] | 陈欢欢, 陈凯凯, 杨慕容, 等. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(2): 34-43. |
CHEN Huanhuan, CHEN Kaikai, YANG Murong, et al. Preparation and properties of polylactic acid/thymol antibacterial fibers[J]. Journal of Textile Research, 2023, 44(2): 34-43. | |
[6] | 曲连艺, 刘江龙, 徐英俊, 等. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 176-182. |
QU Lianyi, LIU Jianglong, XU Yingjun, et al. Preparation and properties of mussel-inspired durable antimicrobial fabrics[J]. Journal of Textile Research, 2023, 44(2): 176-182. | |
[7] |
NAWAB R, IQBAL A, NIAZI F, et al. Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile[J]. Polymer Bulletin, 2022, 80(7): 7221-7245.
doi: 10.1007/s00289-022-04418-5 |
[8] |
ALAVI M, LI L, NOKHODCHI A. Metal, metal oxide and polymeric nanoformulations for the inhibition of bacterial quorum sensing[J]. Drug Discovery Today, 2023, 28(1): 103392-103402.
doi: 10.1016/j.drudis.2022.103392 |
[9] |
HUANG T, LI X, MAIER M, et al. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era[J]. Acta Biomaterialia, 2023, 158: 56-79.
doi: 10.1016/j.actbio.2023.01.019 |
[10] |
PASQUET J, CHEVALIER Y, PELLETIER J, et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 263-274.
doi: 10.1016/j.colsurfa.2014.05.057 |
[11] |
LI M, ZHU L, LIN D. Toxicity of ZnO nanoparticles to escherichia coli: mechanism and the influence of medium components[J]. Environmental Science & Technology, 2011, 45(5): 1977-1983.
doi: 10.1021/es102624t |
[12] |
LAKSHMI PRASANNA V, VIJAYARAGHAVAN R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark[J]. Langmuir, 2015, 31(33): 9155-9162.
doi: 10.1021/acs.langmuir.5b02266 pmid: 26222950 |
[13] |
RAGHUPATHI K R, KOODALI R T, MANNA A C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir, 2011, 27(7): 4020-4028.
doi: 10.1021/la104825u pmid: 21401066 |
[14] |
SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3): 219-242.
doi: 10.1007/s40820-015-0040-x pmid: 30464967 |
[15] |
GHOSH CHAUDHURI R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433.
doi: 10.1021/cr100449n pmid: 22204603 |
[16] |
LIU Y, ZHOU H, WANG J, et al. Core-shell Fe3O4@catechol-formaldehyde trapped satellite-like silver nanoparticles toward catalytic reduction in cationic and anionic dyes[J]. Vacuum, 2022, 202: 111204-111214.
doi: 10.1016/j.vacuum.2022.111204 |
[17] |
WANG T, OKEJIRI F, QIAO Z A, et al. Tailoring polymer colloids derived porous carbon spheres based on specific chemical reactions[J]. Advanced Materials, 2020, 32(44): 2002475-2002495.
doi: 10.1002/adma.v32.44 |
[18] |
LIU J, WICKRAMARATNE N P, QIAO S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials, 2015, 14(8): 763-774.
doi: 10.1038/nmat4317 pmid: 26201892 |
[19] | 吴娇, 于湖生, 万兴云, 等. 抗菌防螨防霉功能改性粘胶纤维的制备及其性能[J]. 纺织学报, 2019, 40(7): 19-23. |
WU Jiao, YU Husheng, WAN Xingyun, et al. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers[J]. Journal of Textile Research, 2019, 40(7): 19-23. | |
[20] |
WEI J, WANG G, CHEN F, et al. Sol-gel synthesis of metal-phenolic coordination spheres and their derived carbon composites[J]. Angewandte Chemie International Edition, 2018, 57(31): 9838-9843.
doi: 10.1002/anie.v57.31 |
[21] |
LI X, ZHANG K, SHI R, et al. Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules[J]. Carbohydrate Polymers, 2017, 176: 246-256.
doi: S0144-8617(17)30971-2 pmid: 28927605 |
[22] |
YANG Y, JI H, DUAN H, et al. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications[J]. Polymer Chemistry, 2019, 10(33): 4537-4550.
doi: 10.1039/C9PY00846B |
[23] |
WANG G, QIN J, ZHOU X, et al. Self-template synthesis of mesoporous metal oxide spheres with metal-mediated Inner architectures and superior sensing performance[J]. Advanced Functional Materials, 2018, 28(51): 1806144-1806151.
doi: 10.1002/adfm.v28.51 |
[24] |
YUEN A K, HUTTON G A, MASTERS A F, et al. The interplay of catechol ligands with nanoparticulate iron oxides[J]. Dalton Transactions, 2012, 41(9): 2545-2559.
doi: 10.1039/c2dt11864e |
[25] |
GENG H, ZHONG Q Z, LI J, et al. Metal ion-directed functional metal-phenolic materials[J]. Chemical Reviews, 2022, 122(13): 11432-11473.
doi: 10.1021/acs.chemrev.1c01042 |
[26] |
PILATO L. Phenolic resins: 100 years and still going strong[J]. Reactive and Functional Polymers, 2013, 73(2): 270-277.
doi: 10.1016/j.reactfunctpolym.2012.07.008 |
[27] |
HIRANO K, ASAMI M. Phenolic resins: 100 years of progress and their future[J]. Reactive and Functional Polymers, 2013, 73(2): 256-269.
doi: 10.1016/j.reactfunctpolym.2012.07.003 |
[28] |
GAWLINSKA-NECEK K, WLAZLO M, SOCHA R, et al. Influence of conditioning temperature on defects in the double Al2O3/ZnO layer deposited by the ALD method[J]. Materials, 2021, 14(4): 1038-1048.
doi: 10.3390/ma14041038 |
[29] |
AL-GAASHANI R, RADIMAN S, DAUD A R, et al. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods[J]. Ceramics International, 2013, 39(3): 2283-2292.
doi: 10.1016/j.ceramint.2012.08.075 |
[30] |
SONG Y, HE Y, CAO Z, et al. Fabrication of antireflective coatings on cotton surface using dye-loaded nanoparticles for eco-friendly textile inkjet printing[J]. Progress in Organic Coatings, 2023, 182: 107607-107616.
doi: 10.1016/j.porgcoat.2023.107607 |
[31] |
WANG M, YI N, FANG K, et al. Deep colorful antibacterial wool fabrics by high-efficiency pad dyeing with insoluble curcumin[J]. Chemical Engineering Journal, 2023, 452: 139121-139128.
doi: 10.1016/j.cej.2022.139121 |
[32] | 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(3): 15-19. |
MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide[J]. Journal of Textile Research, 2020, 41(3): 15-19. | |
[33] |
JIANG S, LI Q, WANG F, et al. Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers[J]. Chemosphere, 2022, 291(3): 133106-133115.
doi: 10.1016/j.chemosphere.2021.133106 |
[34] |
TIJING L D, RUELO M T G, AMARJARGAL A, et al. Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles[J]. Chemical Engineering Journal, 2012, 197: 41-48.
doi: 10.1016/j.cej.2012.05.005 |
[35] |
ZHANG Y, ZHOU Q, XIA W, et al. Sonochemical mordanting as a green and effective approach in enhancing cotton bio natural dye affinity through soy surface modification[J]. Journal of Cleaner Production, 2022, 336: 130465-130472.
doi: 10.1016/j.jclepro.2022.130465 |
[36] |
AMESIMEKU J, FAN L, JAKPA W, et al. Dyeing properties of meta-aramid fabric dyed with basic dye using ultrasonic-microwave irradiation[J]. Journal of Cleaner Production, 2021, 285: 124844-124852.
doi: 10.1016/j.jclepro.2020.124844 |
[1] | ZHAI Qian, ZHANG Heng, ZHAO Ke, ZHU Wenhui, ZHEN Qi, CUI Jingqiang. Laminated design and water quick-drying performance of biomimetic bamboo-tube fibrous humidifying materials [J]. Journal of Textile Research, 2024, 45(02): 1-10. |
[2] | YANG Zhichao, LIU Shuqiang, WU Gaihong, JIA Lu, ZHANG Man, LI Fu, LI Huimin. Research progress in absorbable surgical sutures [J]. Journal of Textile Research, 2024, 45(01): 230-239. |
[3] | HUANG Biao, ZHENG Li'na, QIN Yan, CHENG Yujun, LI Chengcai, ZHU Hailin, LIU Guojin. Preparation of porous TiO2 particles and their adsorption for ionic dyes [J]. Journal of Textile Research, 2023, 44(11): 167-175. |
[4] | LOU Huiqing, SHANG Yuanyuan, CAO Xianzhong, XU Beilei. Preparation and performance of titanium carbonitride/viscose fiber bundle as interface water evaporator [J]. Journal of Textile Research, 2023, 44(10): 9-15. |
[5] | LIU Hao, MA Wanbin, LUAN Yiming, ZHOU Lan, SHAO Jianzhong, LIU Guojin. Preparation and properties of structural colored carbon fiber/polyester blended yarns based on photonic crystals [J]. Journal of Textile Research, 2023, 44(02): 159-167. |
[6] | XIAO Ming, HUANG Liang, LUO Longyong, BI Shuguang, RAN Jianhua. Synthesis of carboxylated polystyrene fluorescent microspheres and its application in fabric anti-counterfeiting [J]. Journal of Textile Research, 2023, 44(02): 184-190. |
[7] | PENG Yangyang, SHENG Nan, SUN Fengxin. Scalable construction and performance of fiber-based flexible moisture-responsive actuators [J]. Journal of Textile Research, 2023, 44(02): 90-95. |
[8] | QU Lianyi, LIU Jianglong, XU Yingjun, WANG Yuzhong. Preparation and properties of mussel-inspired durable antimicrobial fabrics [J]. Journal of Textile Research, 2023, 44(02): 176-183. |
[9] | ZHANG Diandian, YU Mengnan, LI Min, LIU Mingming, FU Shaohai. Preparation and antifouling properties of super-slip cotton fabric based on polymer microspheres grafted with silicone oil [J]. Journal of Textile Research, 2022, 43(10): 119-125. |
[10] | ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin. Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions [J]. Journal of Textile Research, 2022, 43(08): 40-47. |
[11] | LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59. |
[12] | XIONG Yonghui, WANG Dong, DU Changsen, FU Shaohai. Preparation of aqueous dispersion system of bisneopentyl glycol dithiopyrophosphate and its application in flame-retardant viscose fiber [J]. Journal of Textile Research, 2022, 43(07): 22-28. |
[13] | QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36. |
[14] | OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56. |
[15] | LIU Suo, WANG Yaqian, WEI Anfang, ZHAO Lei, FENG Quan. Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobilization [J]. Journal of Textile Research, 2022, 43(05): 124-129. |
|