Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (10): 170-176.doi: 10.13475/j.fzxb.20231200401

• Apparel Engineering • Previous Articles     Next Articles

Construction of shirt component module groups based on process similarity

SHENG Xibin1, ZHAO Songling1, GU Bingfei1,2,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Digital Intelligence Style and Creative Design Research Center, Key Research Center of Philosophy and Social Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Received:2023-12-05 Revised:2024-06-26 Online:2024-10-15 Published:2024-10-22
  • Contact: GU Bingfei E-mail:gubf@zstu.edu.cn

Abstract:

Objective Under the background of digital economy, the popularity of individual needs promotes the diversified development of clothing styles, which brings new opportunities and challenges to clothing production. At present, the clothing market as a whole presents a "multi-variety, small batch, short cycle" production mode. In order to reduce production difficulty caused by excessive style changes and to reduce production costs, industrial customization is oriented to customer demand while taking into account the production speed and economic benefits, in which modular production is one of the effective means to achieve this production mode.

Method Using the fuzzy clustering of equivalence relation, the method of building module group of shirt processing components was achieved. The typical shirt styles produced in recent years were taken as the research object, the common styles in production were sorted and classified. The main shapes and processing methods were summarized, the processing modules and stitch types were classified and coded, and the shirt modules were divided under the production situation of short flow.

Results After the basic module group and processing technology are summarized, the classification of clothing modules is quantitatively analyzed and studied. First of all, the complex process is preliminarily screened. Processing examples of different modules : 0 indicates that the module does not use this process, 1 indicates that the module will use this process for processing. The truncated matrices under different λ thresholds are established by fuzzy hierarchical matrix. The modules are clustered from large to small, and different truncated matrices are divided into different truncated matrices. A total of 19 kinds of clustering results were obtained for all types of parts (parts) modules, with a total of 42 parts (parts). On the basis of preliminary screening, fuzzy F-statistic formula was used to calculate the corresponding values of different clustering results. The optimal solution is obtained when the module group of shirt production process is divided into 11 classes. According to the results of F-statistic quantitative analysis, the division of the final module group clustering results is obtained.The final clustering results are basically consistent with the actual production, and the module processing technology in the same module group is basically similar.

Conclusion The theoretical method of this research is extended to cost accounting, wage payment, quality assessment and other aspects, and provides certain reference value for the production of clothing production arrangement, construction period forecast and other production links. In the following research, we will focus on the research direction of module family time prediction based on BP neural network and the optimization application of module production scheduling for mixed mode components.

Key words: shirt, clothing style, process similarity, fuzzy clustering, module group, modularization production

CLC Number: 

  • TS941.17

Fig.1

Module division style diagram"

Tab.1

Separate machining module classification"

部件一级编码 部件名称 部件二级编码 部件种类 部件一级编码 部件名称 部件二级编码 部件种类
a 辅件 01 洗唛 e 口袋 01 袋盖
02 主唛及尺码唛 02 贴袋
03 挂耳 f 袖衩 01 绲边袖衩
b 上级领 01 衬衫领 02 大小袖衩
c 下级领 01 衬衫领 g 边位 01 褶位
02 立领 02 省位
d 01 一片式装襟 03 分割位
02 双层装襟 h 克夫 01 一片式
前襟 03 装暗门襟 02 双层
04 连裁前襟 i 贴边 01 衣摆贴
05 连裁暗门襟 02 袖口贴
03 前襟贴

Tab.2

Composite assembly module classification"

部位一
级编码
部位
名称
部位二
级编码
部位
种类
组装
裁片
A 领圈 01 领+前片+后片
B 肩缝/
前过肩
01 前片+后片
C 袖笼 01 袖片+前片+后片
D 袖底缝 01 袖片/袖片+前片+后片
E 贴袋 01 口袋+前片
F 侧缝 01 前片+后片/袖片+前片+后片
G 袖口 01 贴边袖口 袖片(袖底缝已合好)
02 折边袖口 袖口贴+袖片
03 卷边袖口 袖片(袖底缝已合好)
04 拼接袖口 克夫+袖片
H 前中 01 装襟 门里襟+前片
02 贴边前襟 前襟贴+前片
I 01 侧衩 前片+后片
J 衣摆 01 贴边衣摆 衣摆贴+前片+后片
02 卷边衣摆 前片+后片
03 折边衣摆 前片+后片
04 绲边衣摆 前片+后片
K 后过肩 过肩+后片

Tab.3

Main machine types and corresponding processes"

烫台 单针平车 专机 拷边机 手工
平烫 走缩 模板合 三线拷 点位
烫倒 绱驳 走定 刀车修 五线合 修翻
烫开 夹缉 卷边器卷 双针明缉 小三线合 量剪
扣烫 折缉 网衬卷 黏合机烫衬
折烫 拉筒绲
包烫 明缉 钉/叠针
烫定 暗缉
粘衬 扪缉

Tab.4

Example of module processing"

部件 烫台 单针电脑车 拷边机 其它
包烫 扣烫 折烫 拼合 明缉 暗缉 点位 量剪
三夹领 1 1 0 0 1 1 0 0 1 0
立领 1 1 0 1 0 1 0 0 1 0
一片克夫 0 1 1 0 0 0 0 0 0 1
前襟 0 1 1 1 1 1 0 0 1 0
袖笼 0 0 0 1 1 0 1 1 0 0

Tab.5

Result of intercept division"

截距 类别
聚类对象
的个数
截距 类别
聚类对象
的个数
1.000 0 34 12 0.500 0 11 39
0.777 8 32 13 0.444 4 10 39
0.750 0 29 18 0.400 0 9 39
0.692 3 28 20 0.333 3 7 39
0.666 7 24 27 0.307 7 6 39
0.636 4 23 27 0.285 7 4 40
0.625 0 22 28 0.250 0 3 41
0.583 3 21 28 0.222 2 2 41
0.571 4 16 35 0.200 0 1 42
0.545 5 15 36

Fig.2

Number of clusters is determined based on fuzzy F-statistics"

Tab.6

Result of module family division"

序号 各模块族中部件(部位)类别
1 E-01贴袋
2 g-01褶位
3 g-02省位
4 f-02绲边袖衩,J-04绲边衣摆
5 G-03卷边袖口,J-03卷边衣摆,I-01侧衩
6 H-01前中,A-01领圈,G-01拼接袖口
7 a-01主唛及尺码唛,a-02洗唛,a-03挂耳
8 C-01袖笼,B-01肩缝,F-01侧缝,D-01袖底缝,
K-01后过肩,g-03分割位
9 e-02口袋,d-04连裁前襟,d-05连裁暗门襟,
G-02折边袖口,J-02折边衣摆
10 h-01一片式克夫,d-01一片式装襟,d-03装暗门襟,
f-02大小袖衩,i-01下摆贴,i-02袖口贴,i-03前襟贴
11 b上级领,c下级领,h-02两片式克夫,e-01袋盖,e-02两片
式装襟,H-01贴边前襟,G-01贴边袖口,J-01贴边衣摆
[1] 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(9): 41-48.
LIU Feng, XU Jie, KE Wenbo. Real-time dynamic scheduling for garment sewing process based on deep reinforcement learning[J]. Journal of Textile Research, 2022, 43(9): 41-48.
[2] 朱光好. 我国纺织服装绿色供应链管理及对策[J]. 纺织学报, 2012, 33(10): 153-160.
ZHU Guanghao. Problems and countermeasures of environmentally conscious supply chain management of China' s textile and clothing industry[J]. Journal of Textile Research, 2012, 33(10): 153-160.
[3] XU Y N, Thomassey S, ZENG X Y. Garment mass customization methods for the cutting-related processes[J]. Textile Research Journal, 2021, 91(7/8): 802-819.
[4] LIU E, HSIAO S W. A decision support system for product family design[J]. Information Sciences, 2014, 281: 113-127.
[5] DONG B, JIA H M, LI Z, et al. Implementing mass customization in garment industry[J]. Systems Engineering Procedia, 2012, 3: 372-380.
[6] 周海媚, 徐燕妮, 张旭靖, 等. 服装款式模块化设计方法[J]. 纺织学报, 2015, 36(8): 104-109.
ZHOU Haimei, XU Yanni, ZHANG Xujing, et al. Modularized design method of garment style[J]. Journal of Textile Research, 2015, 36(8): 104-109.
[7] ZHOU H M, XU Y N, WANG L C, et al. A garment design method based on modularization[J]. Textile Research Journal, 2016, 86(16): 1710-1715.
[8] KIM H S, CHO S B. Application of interactive genetic algorithm to fashion design[J]. Engineering Applications of Artificial Intelligence, 2000, 13(6): 635-644.
[9] 宋莹, 丁乙烜. 男衬衫生产流水线模块化优化设计[J]. 服装学报, 2021, 6(1): 48-52.
SONG Ying, DING Yixuan. Modular simulation optimization design of man's shirt production line[J]. Journal of Clothing Research, 2021, 6(1): 48-52.
[10] 刘立枝, 闫亦农, 雒彬钰, 等. 模块化裤装缝制流水线的优化设计[J]. 毛纺科技, 2020, 48(1): 66-69.
LIU Lizhi, YAN Yinong, LUO Binyu, et al. Research on modular trousers sewing production line based on rule division[J]. Wool Textile Journal, 2020, 48(1): 66-69.
[11] 颜伟雄, 胡觉亮, 韩曙光. 资源约束的模块化服装生产工序编排优化模型与算法[J/OL]. 计算机集成制造系统,1-18[2024-07-01]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220427.1412.008.html.
YAN Weixiong, HU Jueliang, HAN Shuguang. Optimization model andalgorithm of modular garment production process scheduling with resource con-straints[J/OL]. Computer Integrated Manufacturing Systems, 1-18[2024-07-01]. http://kns.cnki.net/kcms/detail/11.5946.TP.20220427.1412.008.html.
[12] 闫亦农. 蒙古族定制服装模块化缝制流水线的编制[J]. 毛纺科技, 2021, 49(5): 80-85.
YAN Yinong. Arrangement of modular sewing production line of Mongolian custom clothing[J]. Wool Textile Journal, 2021, 49(5): 80-85.
[13] 杨怡洁, 陈敏之. 基于多层次划分的服装产品族构造方法[J]. 浙江纺织服装职业技术学院学报, 2021, 20(4): 18-24.
YANG Yijie, CHEN Minzhi. Clothing product family construction method based on multi-level division[J]. Journal of Zhejiang Fashion Institute of Technology, 2021, 20(4): 18-24.
[14] 杨建峰, 肖和业, 李亮, 等. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539.
doi: 10.12305/j.issn.1001-506X.2022.08.18
YANG Jianfeng, XIAO Heye, LI Liang, et al. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism[J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539.
doi: 10.12305/j.issn.1001-506X.2022.08.18
[15] LI Z K, WEI W Y. Modular design for optimum granularity with auto-generated DSM and improved elbow assessment method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 236(4): 413-426.
[16] 孙才志, 王敬东, 潘俊. 模糊聚类分析最佳聚类数的确定方法研究[J]. 模糊系统与数学, 2001(1): 89-92.
SUN Caizhi, WANG Jingdong, PAN Jun. Research on the method of determining the optimal class number of fuzzy cluster[J]. Fuzzy Systems and Mathematics, 2001(1): 89-92.
[17] MIN M. Study of combined fuzzy clustering algorithm based on F-statistics hierarchy clustering[J]. Applied Mechanics and Materials, 2010, 29-32: 802-808.
[18] 吴成茂, 范九伦. 模糊F统计量及其应用[J]. 西安邮电学院学报, 2003(3): 56-61.
WU Chengmao, FAN Jiulun. Fuzzy F statistic and its application[J]. Journal of Xi'an University of Post and Telecommunications, 2003(3): 56-61.
[19] 贾晔, 李军, 丁艳. 基于模糊聚类算法的定制厨柜零件分类制造技术[J]. 林业工程学报, 2016, 1(3): 133-138.
JIA Ye, LI Jun, DING Yan. Customized cabinet part classification manufacturing technology based on fuzzy clustering algorithm[J]. Journal of Forestry Engineering, 2016, 1(3): 133-138.
[1] YAO Chenxi, WAN Ailan. Thermal and moisture comfort of polybutylene terephthalate/polyethylene terephthalate weft-knitted sports T-shirt fabrics [J]. Journal of Textile Research, 2024, 45(01): 90-98.
[2] WANG Yaqian, WAN Ailan, ZENG Deng. Preparation and performance evaluation of weft knitted ironing-free shirt fabric based on cotton/shape memory spandex [J]. Journal of Textile Research, 2023, 44(05): 125-131.
[3] XIAO Boxiang, LIU Zhengdong, GUO Yucheng, WANG Yuanxia. Shirt pattern generating method based on 3-D human scanning model [J]. Journal of Textile Research, 2022, 43(12): 151-159.
[4] MA Ling, LÜ Yexin, LIU Chi, CHEN Jiazhen, ZOU Fengyuan. Collocation rule construction of women's wear based on clothing attributes [J]. Journal of Textile Research, 2022, 43(08): 161-166.
[5] YANG Xiaobo. Research on 3-D clothing style based on interactive genetic algorithm [J]. Journal of Textile Research, 2022, 43(06): 145-150.
[6] ZHENG Lu, YAN Weixiong, HU Jueliang, HAN Shuguang. Balanced optimization of garment hybrid assembly line based on modularization [J]. Journal of Textile Research, 2022, 43(04): 140-146.
[7] JIANG Hui, MA Biao. Style similarity algorithm based on clothing style [J]. Journal of Textile Research, 2021, 42(11): 129-136.
[8] TUO Wu, WANG Xiaoyu, GAO Yakun, YU Yuanyuan, HAO Xiaoxiao, LIU Yongliang, GUO Xin. Clothing style identification based on improved edge detection algorithm [J]. Journal of Textile Research, 2021, 42(10): 157-162.
[9] LI Qianwen, WANG Jianping, YANG Yalan, ZHANG Bingjie, LI Zhilin. Perceptual evaluation of men's suit style elements based on Quantitative Theory I [J]. Journal of Textile Research, 2021, 42(05): 155-161.
[10] ZHANG Suning, WANG Ze, MA Dali. Simulation and optimization of Flexsim shirt assembly line based on improved ant colony algorithm [J]. Journal of Textile Research, 2021, 42(03): 155-160.
[11] ZHENG Tianzi, WANG Jianping. Perceptual research on printing pattern design for clothing [J]. Journal of Textile Research, 2020, 41(08): 101-107.
[12] SU Xuzhong, WEI Yanhong, LIU Xinjin, XIE Chunping. Effect of spinning method on wrinkle-resistance and tensile elasticity of fabric [J]. Journal of Textile Research, 2020, 41(04): 33-38.
[13] YU Xinhe, WANG Jianping. Customer perceived value evaluation method of men's shirts customization under internet environment [J]. Journal of Textile Research, 2020, 41(03): 136-142.
[14] ZHANG Xujing, WANG Lichuan, CHEN Yan. Balancing optimization of garment sewing assembly line based on genetic algorithm [J]. Journal of Textile Research, 2020, 41(02): 125-129.
[15] WANG Qiuhan, WANG Yajing, DONG Keping, XIAO Hong. Effect of clothing structure and dummy model on shielding effectiveness of electromagnetic protecting clothing [J]. Journal of Textile Research, 2020, 41(01): 124-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!