JOURNAL OF TEXTILE RESEARCH ›› 2013, Vol. 34 ›› Issue (6): 147-154.

Previous Articles    

Review of staple yarn spinning technology and analysis of its key features

  

  • Received:2013-03-13 Revised:2013-03-19 Online:2013-06-15 Published:2013-06-19
  • Contact: Zhi-Gang Xia E-mail:117462379@qq.com

Abstract: Based on the modern staple yarn spinning principles, developments were overviewed for the methods including ring spinning, rotor spinning and vortex spinning; the factors and means promoting the staple yarn spinning development were summarized; key features restricting staple yarn spinning further development were also studied extensively. Results indicated that such factors as high efficiency, energy saving and high quality yarn production were main motivations, and process optimization, equipment improvement as well as multi-technical combination were the most common methods for staple yarn spinning development. Since reinforcing fiber control via external mechanical forces such as pneumatic jet or suction, separation, condensing and false twisting has been sufficiently applied during spinning, it is necessary for staple spinning further development and improvement to investigate and apply online fiber property improvement and material multi-functional composite spinning technologies in synergic when new technical problems and bottlenecks appear during the staple spinning development. Key Words Staple Spinning; Yarn Formation Principle; Technical Development; multi-functional composition

Key words: saple fiber, spinning, yarn formation principle, technological development, multi-functional composition

[1] BOOTH, J. E., Textile mathematics [M], vol. Ⅱ, Manchester: The Textile Institute, 1975: 333-350.
[2] HEARLE J. W. S., GUPTA B.S., and MERCHANT V.B., Migration of Fibers in Yarns Part I: Characterization and Idealization of Migration Behavior [J], Textile Res. J. 1965, 35(4): 329-334.
[3] GUPTA B. S., Fiber Migration in Staple Yarns: Part II: The Geometric Mechanism of Fiber Migration and the Influence of Roving and Drafting Variables [J], Textile Res. J. 1970, 40(1): 15-24.
[4] HEARLE J.W.S., and BOSE O.N., Migration of Fibers in Yarns: Part II: A Geometrical Explanation of Migration [J], Textile Res. J. 1965, 35(8): 693-699.
[5] MORTON W. E., The Arrangement of Fibres in Single Yarns [J], Textile Res. J. 1956, 26(5): 325-331.
[6] DOGU I., The Distribution of Transverse Pressure in a Twisted Yarn Allowing for the Fiber Migration and Variation of Fiber Packing Density [J], Textile Res. J. 1972, 42(12): 726-733.
[7] GUPA B. S., Fiber Migration in Staple Yarns: Part III: An Analysis of Migration Force and the Influence of the Variables in Yarn Structure [J], Textile Res. J. 1972, 42(3): 181-196.
[8] HEARLE J. W. S., GUPTA B. S., and GOSWAMI B. C., The Migration of Fibers in yarns Part V: The Combination of Mechanisms of migration [J], Textile Res. J. 1965, 35(11): 972-978.
[9] SUBRAMANNIAN T. A., SALHOTRA K. R., and BHADURI S. N., Twist Flow in Ring Spinning [J], Textile Res. J. 1967, 37(3): 195-204.
[10] XIA Z., WANG H., WANG X., YE W., XU W., A Study on the relationship between irregularity and hairiness of spun yarns [J], Textile Res. J., 2011, 81(3), 273–279.
[11] XIA Z., WANG X., YE W., XU W., ELTAHIR H.A., Effect of repeated winding on carded ring cotton yarn properties [J], Fibers and Polymers, 2011, 12(4): 534-540.
[12] CHANG L., TANG Z.X., WANG X., Effect of Yarn Hairiness on Energy Consumption in Rotating a Ring-Spun Yarn Package [J], Textile Res. J., 2003, 73(11): 949-954.
[13] BELTRAN R., WANG L., WANG X., A Controlled Experiment on Yarn Hairiness and Fabric Pilling [J], Textile Res. J., 2007, 77(3): 179-183.
[14] KRETZSCHMAR S. D., ?zgüney A.T., ?z?elik G., ?zerdem A., The Comparison of Cotton Knitted Fabric Properties Made of Compact and Conventional Ring Yarns Before and After the Dyeing Process [J], Textile Res. J., 2007, 77(4): 233-241.
[15] FUJINO K., and SHIMOTSUMA Y., Studies on Spinning Rings and Travellers [J], Textile Res. J. 1955, 25(9): 799-811.
[16] CRANK J., and WHITMORE D., The Influence of Friction and Traveller Weight in Ring Spinning [J], Textile Res. J. 1954, 24(11): 1006-1010.
[17] KOUKICHI Y., and MICHIO K., A Study on the Accelerated-Point Distribution of Floating Fibers Drafting Processes [J], Journal of the Textile Machinery Society of Japan 1975, 21(4): 95-102.
[18] GRAHAM J. S., and BRAGG C. K., Effect of Spinning Draft Parameters on Cotton Drafting Efficiency [J], Textile Res. J. 1975, 45(7): 515-520.
[19] SU C., and FANG J., Optimum Drafting Conditions of Non-circular Polyester and Cotton Blend Yarns [J], Textile Res. J. 2006, 76(6): 441-447.
[20] HASSEN M. B., SAKLI F., SINOIMERI, A., and RENNER M., Experimental Study of a High Drafting System in Cotton Spinning [J], Textile Res. J. 2003, 73(1): 55-58.
[21] SU C., and LO K., Optimum Drafting Conditions of Fine-Denier Polyester Spun Yarn [J], Textile Res. J. 2000, 70(2): 93-97.
[22] SU C., and FANG J., Optimum Drafting Conditions of Non-circular Polyester and Cotton Blend Yarns [J], Textile Res. J. 2006, 76(6): 441-447.
[23] ISHTIAQUE S. M., DAS A., and NIVOGI R., Optimization of Fiber Friction, Top Arm Pressure and Roller Setting at Various Drafting Stages [J], Textile Res. J. 2006, 76(12): 913-921.
[24] SU C., and FANG J., Fine Count Yarn Spun with a High Draft Ratio [J], Textile Res. J. 2004, 74(2): 123-126.
[25] CHEN K., HUANG C., CHEN S., and PAN N., Developing a New Drafting System for Ring Spinning Machines [J], Textile Res. J. 2000, 70(2): 154-160.
[26] WANG X., and KHAN Z.A., Mohair Fibre Drafting in Ring Spinning. Part I: Pinned Apron [J], J. Text. Inst., 2000, 91 (1): 16-20.
[27] KHAN Z.A., and WANG X., Mohair Fibre Drafting in Ring Spinning. Part II: Pinned Roller [J], 2000, 91 (1): 21-27.
[28] KRIFA M., ETHRIDGE M. D., Compact Spinning Effect on Cotton Yarn Quality: Interactions with Fiber Characteristics [J], Textile Res. J., 2006, 76(5): 388-399.
[29] XUE W., WEI M., ZHANG N., CHENG L., Numerical simulation on the condensing effect of suction slot in compact spinning with lattice apron [J], J. Text. Inst., 2012, 103(10): 1116-1126.
[30] ZOU Z.Y., ZHU Y.D., HUA Z.H., WANG Y., CHENG L.D., Studies of flexible fiber trajectory and its pneumatic condensing mechanism in compact spinning with lattice apron [J], Textile Res. J., 2010, 80(8): 712-719.
[31] ZHANG X., ZOU Z., CHENG L., Numerical study of the three-dimensional flow field in compact spinning with inspiratory Groove [J], Textile Res. J., 2010, 80(1): 84-92.
[32] BECEREN Y., NERGIS B. U., Comparison of the Effect of Cotton Yarns Produced by New, Modified and Conventional Spinning Systems on Yarn and Knitted Fabric Performance [J], Textile Res. J., 2008, 78(4): 297-303.
[33] G?KTEPE F., DEMET Y., ?ZER G., A Comparison of Compact Yarn Properties Produced on Different Systems [J], Textile Res. J., 2006, 76(3): 226-234.
[34] KILIC G..B., SüLAR V., Frictional properties of cotton-Tencel yarns spun in different spinning systems [J], Textile Res. J., 2012, 82(8): 755-565.
[35] ???LU H.?., KIRE?CI A., Investigation of the fastness properties and color values of cotton fabrics knitted from ring spun and Sirospun?[J], J. Text. Inst., 2011, 102(2): 114-119.
[36] SOLTANI P., JOHARI M.S., A study on siro-, solo-, compact-, and conventional ring-spun yarns. Part II: yarn strength with relation to physical and structural properties of yarns [J], J. Text. Inst., 2012, 103(9): 921-930.
[37] XIA Z., WANG X., YE W., ELTAHIR H.A., Xu W., Fiber trapping comparison of embeddable and locatable spinning with sirofil and siro core-spinning with flute pipe air suction [J], Textile Res. J., 2012, 82(12): 1255-1262.
[38] LIU W.Y., HUANG T.Y., LI H.M., LI Y.L., Stability and control of the convergence point for two-strand yarn spinning [J], J. Text. Inst., 2012, 103(11): 1228-1233.
[39] LIU S., DAI J., JIA H., LIU X., XU B., Effect of sirospun spinning with a press bar top pin on qualities of flax/cotton blend yarn [J], Textile Res. J., 2012, 82(10): 985-993.
[40] SUBRAMANIAM V., NATARAJAN K. S., Frictional Properties of Siro Spun Yarns [J], J. Text. Inst., 2007, 98(3): 289-292.
[41] CHENG L., FU P., YU X., Relationship Between Hairiness and the Twisting Principles of Solospun and Ring Spun Yarns [J], Textile Res. J., 2004, 74(9): 763-766.
[42] POURAHMAD A., JOHARRI M.S., Comparison of the properties of ring, solo, and siro core-spun yarns [J], J. Text. Inst., 2011, 102(6): 540-547.
[43] YILMAZ D., USAL M.R., A comparison of compact-jet and conventional ring-spun yarns [J], Textile Res. J., 2011, 81(5): 459-470.
[44] YILMAZ D., USAL M.R., Improvement in yarn hairiness by the siro-jet spinning method [J], 2013, DOI: 10.1177/0040517512471748.
[45] JEON B. S., Effect of an Air-Suction Nozzle on Yarn Hairiness and Quality [J], Textile Res. J., 2000, 70(11): 1019–1024.
[46] XU B.G., TAO X.M., Techniques for Torque Modification of Singles Ring Spun Yarns [J], Textile Res. J., 2008, 78 (10): 869-879.
[47] FENG J., XU B.G., TAO X.M., Systematic investigation and optimization of fine cotton yarns produced in a modified ring spinning system using statistical methods[J], Textile Res. J., 2013, 83 (3): 238-248.
[48] GUO Y., and TAO XM., XU BG., FENG J., and WANG SY., Structural characteristics of low torque and ring spun yarns [J], Textile Res. J. 2011, 81 (8): 778-790.
[49] NIKOLI? M., STIEPANOVI? Z, LESJAK F., ?TRITOF A, Compact Spinning for Improved Quality of Ring-Spun Yarns [J], Fibers & Textiles in Eastern Europe, 2011, 11(4): 30-35.
[50] SOE A. K., TAKAHASHI M., NAKAJIMA M., MATSUO T., and MATSUMOTO T., Structure and Properties of MVS Yarn in Comparison with Ring Yarn and Open-end Rotor Spun Yarns [J], Textile Res. J. 2004, 74 (9): 819-826.
[51] LAWRENCE C. A., Advances in yarn spinning technology [M]. Sawston: Woodhead Publishing Limited, 2010: 262.
[52] LORD P R, Handbook of yarn production: Technology, science and economics [M]. Sawston: Woodhead Publishing Limited, 2003: 185-187.
[53] GORDON S., and Hsieh, Y-L., Cotton: Science and technology [M]. Manchester: The Textile Institute, 2007: 253-254.
[54] LAWRENCE C. A., and CHEN K. Z., Textile Progress Rotor-Spinning [M]. Manchester: The Textile Institute, 1984: 5, 62.
[55] 狄剑锋,王瑞. 转杯纺、摩擦纺和喷气纺的技术分析和发展趋向[J].天津纺织工学院学报,1990, 9 (3-4): 84-88.
DI Jianfeng, WANG Rui, The technically analysis and trend of development for rotor spinning, frictional spinning and air-jet spinning [J]. Journal of TianJin Institute of Textile Science and Technology, 1990, 9 (3-4): 84-88.
[56] 汤龙世. 转杯纺系统生产技术[M].1版.北京:中国纺织出版社,2005: 2-4.
TANG Longshi. Rotor spun system production technology [M]. Beijing: China Textile Press, 2005: 2-4.
[57] DURU P. N., and BABAARSLAN O., determining an optimum opening roller speed for spinning polyester/waste blend rotor yarns [J], Textile Res. J. 2003, 70 (10): 907-911.
[58] MANOHAR J.S., RAKSHIT A.K., and BALASUBRAMANIAN N., Influence of rotor speed, rotor diameter, and carding conditions on yarn quality in open-end spinning [J], Textile Res. J. 1983, 53 (8): 497-503.
[59] XILA F., PEY A., and BARELLA A.A., A contribution to the study of the hairiness of cotton open-end-spun yarns. Part I: The influence of the rotor speed and twist multiplier on yarn hairiness in relation to pre-spinning processing [J], J., Textile Inst., 1982, 73(2): 55-63.
[60] MARINO P.N., Garrofalo J., Barella A., and Manich A.M., Factoral studies in rotor spinning Part II: polyester-fiber and polyester-fibre-cotton blended-fibre yarns [J], J., Textile Inst., 1984, 75(1): 23-27.
[61] MARINO P.N., Carpintero J., Manich A.M., and Barella A., The influence of the under-pressure in the rotor on the properties of open-end-spun cotton yarns at different values of the rotor speed and navel speed [J], J., Textile Inst., 1985, 76(2): 86-102.
[62] SALHOTRA K.R., and BALASUBRAMANIAN P., An approach to the optimization of rotor-spinning machine parameters [J], J., Textile Inst., 1986, 77(2): 128-145.
[63] YANG R.H., and WANG S.Y., Determination of the convergent point in the rotor-spun composite yarn spinning process [J], Textile Res. J. 2009, 79 (6): 555-557.
[64] NIELD R., and ALI A.R.A., Open-End-Spun Core-Spun Yarns [J], J., Textile Inst., 1977, 68(7): 223-229.
[65] POURESFANDIARI F., New method of producing loop fancy yarns on a modified open-end rotor spinning frame [J], Textile Res. J. 2003, 73 (3): 209-215.
[66] ZOU Z., CHENG L., XUE W., and YU J., A study of the twisted strength of the whirled airflow in Murata vortex spinning [J], Textile Res. J. 2008, 78 (78): 682-687.
[67] PEI Z., YU C., Study on the principle of yarn formation of Murata vortex spinning using numerical simulation [J], Textile Res. J. 2009, 79 (14): 1274-1280.
[68] ERDUMLU N., OXENHAM W., OZIPEK B., The impact of combing and processing parameters on the structure and properties of fine count vortex yarns [J], Textile Res. J. 2013, 83 (4): 396-405.
[69] DENO K., Spinning Apparatus with Twisting Guide Surface. US Patent, 5528895[P]. 1996-09-02.
[70] ERDUMLU N., OZIPEK B., and OXENHAM W., Vortex spinning technology [J]. Textile Progress, 2012, 44(3-4): 141-174.
[71] OXENHAM W., and BASAL G., Effects of some process parameters on the structure and properties of vortex spun yarn [J], Textile Res. J. 2006, 76 (6):492-499.
[72] ERDUMLU N., OZIPEK B., OZTUNA A.S., and CETINKAYA S., Investigation of vortex spun yarn properties in comparison with conventional ring and open-end rotor spun yarns [J], Textile Res. J. 2009, 79 (7):585-595.
[73] ORTLEK H.G., TUTAK M., YOLACAN G., Assessing colour differences of viscose fabrics knitted from vortex-, ring- and open-end rotor-spun yarns after abrasion[J], J. Text. Inst., 2010, 101(4): 310-314.
[74] KILIC G.B., SULAR V., Frictional properties of cotton-tencel yarns spun in different spinning systems [J], Textile Res. J. 2012, 82 (8):755-765.
[75] RAMESHKUMAR C., ANANDKUMAR P., SENTHILNATHAN P., JEEVITHA R., and ANBUMANI N., Comparative Studies on Ring Rotor and Vortex Yarn Knitted Fabrics[J], AUTEX Res. J., 2008, 8 (4):100-105.
[76] ZHENG S., ZOU Z., SHEN W., and CHENG L., A study of the fiber distribution in yarn cross section for vortex-spun yarn [J], Textile Res. J. 2012, 82 (15):1579-1586.
[77] BASU A., Progress in air-jet spinning [J]. Textile Progress, 2009, 29(3): 1-38.
[78] ORTLEK H.G., Effect of some variables on properties of 100% cotton vortex spun yarn [J], Textile Res. J. 2005, 75 (6):458-461.
[79] ORTLEK H.G., and ULKU S., Effects of spandex and yarn counts on the properties of elastic core-spun yarns produced on Murata vortex spinner [J], Textile Res. J. 2007, 77 (6):432-436.
[80] ERDUMULU N., OZIPEK B., and OXENHAM W.,The structure and properties of carded cotton vortex yarns [J], Textile Res. J. 2012, 82 (7):708-718.
[81] XU W., XIA Z., YE W., CUI W., LI W., and ZHANG S. Method and apparatus for producing high quality yarn on a ring-spinning machine, US Patent, 007552580B2 [P]. 2009-06-30.
[1] . Preparation and properties of laminated nanofiber-based separator with over-temperature protection function [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 21-26.
[2] . Application and process optimization of false twist in ring spinning machine [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 27-31.
[3] . Analysis on blending effect of colored fiber in digital rotor spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 32-38.
[4] . Preparation and properties of orientation reinforced composite separator for lithium-ion battery [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 8-14.
[5] . Preparation and properties of electrospun polyacrylonitrile / copper sulfate nanofibrous membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 15-20.
[6] . Preparation technology and application progress of solution blown nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 165-173.
[7] . Intelligent control model for spinning quality based on multi-process hierarchy [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 137-147.
[8] . Radial liner stretching jet spinning method using inertial centrifugal force [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 19-23.
[9] . Prediction of color blending effect of digital rotor yarn based on Kubelka-Munk double constant theory [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 36-41.
[10] . Position recognition of spinning yarn breakage based on convolution neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 136-141.
[11] . Preparation of elastic radiation resistant textile based on double filament core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 52-57.
[12] . Preparation and characterization of microfluidic spinning alginate-based composite fibrous dressings [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 1-7.
[13] . Preparation and properties of collagen/high-molecular weight chitosan composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 8-13.
[14] . Reducing yarn hairiness by wetting in ring spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 108-112.
[15] . Fabrication, structure and properties of vortex core-spun yarn containing a metal wire [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!