JOURNAL OF TEXTILE RESEARCH ›› 2016, Vol. 37 ›› Issue (12): 123-128.
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
Abstract:
In order to study the influence of the auxiliary nozzle geometric structure on the nozzle jet effect and air consumption, the weft insertion flow field of the auxiliary nozzle was simulated with CFD software Fluent. The velocity distributions on the axis of weft flying of auxiliary nozzle under different conditions, such as the input air pressure, the outlet cross-sectional area, the outlet shape and the spray angle of auxiliary nozzle, are obtained. Results indicate that, with the increasing of input air pressure, the velocity of airflow is improved, while the increasing rate has been decreased. Gas consumption varies with the pressure positively. The velocity and sustainability of the air flow are determined by outlet cross-sectional area of auxiliary nozzle, and the air consumption is increasing with the growth of the cross-sectional area. For a given outlet cross-sectional area, various outlet shapes of auxiliary nozzle make little difference on the flow fields. Different nozzle spray angles correspond to different velocity and peak position on the direction of weft flying, and the air consumption is reduced with the increasing of spray angle in the experimental range. Therefore, appropriate auxiliary nozzle and weft insertion process play a critical role of achieving high air-jet loom quality and low consumption.
Key words: air-jet loom, auxiliary nozzle, flow field, gas consumption
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.fzxb.org.cn/EN/
http://www.fzxb.org.cn/EN/Y2016/V37/I12/123
Cited