JOURNAL OF TEXTILE RESEARCH ›› 2017, Vol. 38 ›› Issue (06): 169-174.doi: 10.13475/j.fzxb.20161200206

Previous Articles     Next Articles

In situ assembling of silver nanoparticles on modified active cotton fibers for antibacterial finishing

  

  • Received:2016-12-02 Revised:2016-12-05 Online:2017-06-15 Published:2017-06-16

Abstract:

In order to realize the in situ directed assembling of silver nanoparticles on cotton fabric and the green, convenient, efficient, and recyclable processing technology of antibacterial textile with silver nanoparticles, modified cotton fabric with the capabilities of capture and reduce silver ions, control the size of nanoparticles, and fixing them on the fabric was prepared by oxidizing cotton fabrics and then grafting modified polyamide hyperbranched polymer with a core-shell structure on them. The modified active cotton fabrics were utilized to in-situ assemble silver nanoparticles. The treated cotton fabrics were characterized. The antibacterial activity and washing durability of them were measured. The results active cotton fabrics were utilized to in-situ assemble silver nanoparticles. The treated cotton fabric were characterized. The antibacterial activity and washing durability of them were measured. The results indicate that the modified active cotton fabrics are prepared successfully by the above method and the modification treatment does not affcet the mechanical pwoperties of the fabrics obviously. The treatment of assembling silver nanoparticles on active cotton fabric can be peocessed continuously and realized zero release. Silver nanoparticles with the size of 5 to 25 nm are dispersed on the treated cotton fibers. The silver nanoparticles assembled cotton fabrics have excellent antibacterial activities and laundering durability. The bacterial reduction rates against Staphylococcus aureus and Escherichia coli both reach above 99.9%.

Key words: hyperbranched polymer, cotton fabric, silver nanoparticle, in situ, antibacterial finishing

[1] . Application of carbohydrate additives in 1, 2, 3, 4-butanetetracarboxylic acid anti-wrinkle finishing of cotton fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 89-94.
[2] . Application of porphyrin iron/H2O2 system in low temperature bleaching of cotton fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 75-80.
[3] . Antibacterial and hydrophilic finishing of moisture absorption and sweat transport polyester knitted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 74-79.
[4] . Influence of fabric heating rates on salt-free pad-steam dyeing of reactive dye [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 106-111.
[5] . Preparation and performance of transient cool feeling cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 94-97.
[6] . Anti-wrinkle finishing of organosilicone modified polyurethane/acrylate copolymer emulsion for cotton fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 89-93.
[7] . Biosynthesis of Eucommia ulmoides silver nanoparticles and application thereof in reductive catalytic degradation of Direct Orange 26 [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 104-110.
[8] . Preparation of a novel N-P flame retardant and its flame retardant properties in cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 97-101.
[9] . Heterogencous exhausting dyeing of cotton fabrics with reactive dye in Pickering emulsion [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 79-83.
[10] . Optimization on antibacterial finishing process of cotton fabric based on electron beam irradiation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 81-87.
[11] . Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 75-80.
[12] . Influence of pattern and ratio of hydrophobic area on moisture management property to cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 89-93.
[13] . Photocatalitic color stripping of cotton fabric dyed with reactive dye by employing UV/H2O systerm [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 81-88.
[14] . Padding vacuum-dehydration wet-steaming dyeing of cotton fabric using reactive golden yellow SRE [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 80-85.
[15] . Low-temperature pretreatment of cotton fabric approached by combining enzyme treating and peroxide bleaching in one bath [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!