Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 158-162.doi: 10.13475/j.fzxb.20180801305

• Management & Information • Previous Articles     Next Articles

Hairiness detection based on maximum entropy and density clustering

LI Pengfei, YAN Kai, ZHANG Huanhuan(), JING Junfeng   

  1. College of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2018-08-02 Revised:2019-04-01 Online:2019-07-15 Published:2019-07-25
  • Contact: ZHANG Huanhuan E-mail:zhanghuanhuan0557@163.com

Abstract:

In order to calculate the number of yarn hairiness and hairiness length more accurately,a method based on maximum entropy and density clustering was proposed to detect the yarn hairiness length and root number. The yarn image was preprocessed by bilateral filtering to filter out the noise in the image and enhance the yarn hairiness characteristics. Then the maximum entropy was adopted to segment the preprocessed yarn image and remove the yarn. The hairiness were extracted and refined. Finally, the density clustering algorithm(DBSCAN clustering) was applied to classify the number of hairiness. In addition, the root and length of hairiness according to the number of classified hairiness and the number of pixels in each class were calculated. Compared with the visual method and the datum line method, the experimental results demonstrate that the proposed method is very close to the visual method and more accurate than the datum line method. Furthermore, it is shown that the proposed method is accurate and effective.

Key words: yarn hairiness, hairiness detection, maximum entropy threshold, density clustering

CLC Number: 

  • TP391.4

Fig.1

Block diagram of hairiness detection method"

Fig.2

Affecting situation of hairy statistics. (a) Hairiness disconnection; (b) Adjacent hairiness"

Tab.1

DBSCAN clustering statistics number of hairs"

图序 领域参数 不同长度(mm)毛羽根数
E M 1 2 3 4 5 6 <1
图2
(a)
0.0~3.0 4~6 3 0 0 0 0 0 4
3.1~6.0 4~6 2 1 0 0 0 0 3
6.1~8.0 4~6 2 1 0 0 0 0 4
3.1~6.0 1~3 2 0 0 0 0 0 5
3.1~6.0 7~9 2 1 0 0 0 0 2
图2
(b)
0.0~3.0 4~6 1 0 0 1 0 0 3
3.1~6.0 4~6 0 0 0 0 1 0 3
6.1~8.0 4~6 1 0 0 1 0 0 3
3.1~6.0 1~3 1 0 0 1 0 0 3
3.1~6.0 7~9 1 0 0 1 0 0 2

Tab.2

Classification of hairiness length"

样本
序号
不同长度(mm)毛羽根数
1 2 3 4 5 6
1# 123 35 15 12 3 1
2# 83 45 20 9 4 2
3# 158 60 30 10 5 1
4# 140 50 20 18 5 3
5# 143 28 19 11 7 4
6# 151 47 11 6 4 2
7# 131 40 25 10 5 2
平均值 132.7 43.6 20 10.9 4.7 2.1

Fig.3

Original image of yarn. (a) Sample 1; (b) Sample 2; (c) Sample 3"

Fig.4

Hairiness extracted by proposed algorithm. (a) Sample 1; (b) Sample 2; (c) Sample 3"

Fig.5

Baseline method (0.5 mm per grid). (a) Sample 1; (b) Sample 2; (c) Sample 3"

Tab.3

Comparison of algorithm and baseline method, visual method"

样本 本文算法
计算的毛羽
长度/mm
基准线法 目测法
测量
长度/mm
相对差/
%
测量
长度/mm
相对差/
%
1.824 1.0 82.4 1.8 1.33
样本1 1.512 1.0 51.2 1.5 0.80
1.080 0.5 116.0 1.1 1.82
0.600 0.5 20.0 0.7 14.29
1.920 1.5 28.0 2.0 4.00
样本2 1.848 1.5 23.2 1.9 2.74
1.200 1.0 20.0 1.2 0.00
1.152 0.5 130.4 1.2 4.00
3.336 2.0 66.8 3.4 1.88
样本3 2.544 2.0 27.2 2.6 2.15
2.088 1.0 108.8 2.1 0.57
1.056 0.5 111.2 1.0 5.60
[1] 杨红英, 朱苏康 . 纱线毛羽[J]. 纺织学报, 2000,21(6):11-14.
YANG Hongying, ZHU Sukang . Yarn hairiness[J]. Journal of Textile Research, 2000,21(6):11-14.
[2] 肖国兰 . 浅析纱线毛羽的成因及预防措施[J]. 上海纺织科技, 2014,42(1):42-43,52.
XIAO Guolan . Causes and pre-prevention measures of yarn hairiness[J]. Shanghai Textile Science & Technology, 2014,42(1):42-43,52.
[3] JING J, HUANG M, LI P , et al. Automatic measurement of yarn hairiness based on the improved MRMRF segmentation algorithm[J]. Journal of The Textile Institute, 2018,109(6):740-749.
[4] 孙银银, 潘如如, 高卫东 . 基于数字图像处理的纱线毛羽检测[J]. 纺织学报, 2013,34(6):102-106.
SUN Yinyin, PAN Ruru, GAO Weidong . Detection of yarn hairiness based on digital image processing[J]. Journal of Textile Research, 2013,34(6):102-106.
[5] FABIJ$\acute{N}$ASKA A, JACKOWSKA-STRUMIŁŁO L . Image processing and analysis algorithms for yarn hairiness determination[J]. Machine Vision and Applications, 2012,23(3):527-540.
[6] 郭海涛, 田坦, 王连玉 , 等. 利用二维属性直方图的最大熵的图像分割方法[J]. 光学学报, 2006(4):506-509.
GUO Haitao, TIAN Tan, WANG Lianyu , et al. Image segmentation method based on maximum entropy of two-dimensional attribute histogram[J]. Acta Optica Sinica, 2006(4):506-509.
[7] 伦向敏, 侯一民 . 运用迭代最大熵算法选取最佳图像分割阈值[J]. 计算机工程与设计, 2015,36(5):1265-1268,1289.
LUN Xiangmin, HOU Yimin . Using the iterative maximum entropy algorithm to select the optimal image segmentation threshold[J]. Computer Engineering and Design, 2015,36(5):1265-1268,1289.
[8] HILDITCH C J . Comparison of thinning algorithms on a parallel processor[J]. Image and Vision Computing, 1983,1(3):115-132.
[9] 李宗林 . 基于DBSCAN的自适应聚类算法研究[D]. 长沙:长沙理工大学, 2015: 14-23.
LI Zonglin . Research on adaptive clustering algorithm based on DBSCAN[D]. Changsha: Changsha University of Science and Technology, 2015: 14-23.
[10] 周培培, 丁庆海, 罗海波 , 等. 基于DBSCAN聚类算法的异常轨迹检测[J]. 红外与激光工程, 2017,46(5):238-245.
ZHOU Peipei, DING Qinghai, LUO Haibo , et al. Abnormal trajectory detection based on DBSCAN clustering algorithm[J]. Infrared and Laser Engineering, 2017,46(5):238-245.
[11] 孙银银, 张宁, 吴洋 , 等. 纱线毛羽骨架及长度的跟踪测量[J]. 纺织学报, 2017,38(8):32-38.
SUN Yinyin, ZHANG Ning, WU Yang , et al. Tracking measurement of yarn hairiness skeleton and length[J]. Journal of Textile Research, 2017,38(8):32-38.
[12] 苏继伟 . 简论纱线毛羽的测试方法[J]. 上海纺织科技, 2004,32(6):60-62.
SU Jiwei . A brief discussion on test method of yarn hairiness[J]. Shanghai Textile Science Technology, 2004,32(6):60-62.
[13] 张继蕾 . 基于图像处理技术的纱线毛羽检测应用研究[D]. 石家庄:河北科技大学, 2011: 2.
ZHANG Jilei . Research on yarn hairiness detection based on image processing technology[D]. Shijiazhuang: Hebei University of Science and Technology, 2011: 2.
[1] . Identification and application of yarn hairiness using adaptive threshold method under single vision [J]. Journal of Textile Research, 2019, 40(05): 150-156.
[2] . Fiber glass bobbin yarn hairiness detection based on machine vision [J]. Journal of Textile Research, 2019, 40(05): 157-162.
[3] . Reducing yarn hairiness by wetting in ring spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 108-112.
[4] . Tracking measurement of yarn hairiness skeleton and length [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 32-38.
[5] Ji-Peng CAO. Influence of flat heel-toe difference of carding machine on yarn hairiness [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 35-39.
[6] CHU Jie;GE Mingqiao. Research into reducing the hairiness of ring spun yarn by a swirler [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(12): 34-37.
[7] LI Xiang-hong;GAO Yi-qiang;MA Jun;LU Yan-li;AO Li-min. Collecting-spinning technology [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(4): 100-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!