Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (12): 109-113.doi: 10.13475/j.fzxb.20181105505

• Apparel Engineering • Previous Articles     Next Articles

Evaluation of thermal storage performance of honeycomb insulation layer for fireproof clothing

HOU Yuying1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2018-11-20 Revised:2019-08-19 Online:2019-12-15 Published:2019-12-18
  • Contact: LI Xiaohui E-mail:lxh@dhu.ehu.cn

Abstract:

In order to improve the stored thermal energy of fireproof clothing in the fire environment, the honeycomb insulation layer was applied to the fireproof clothing, and its heat storage performance was evaluated. The current typical fire-fighting clothing fabrics was selected, the side length, wall thickness and core thickness of the honeycomb core were designed, and 21 kinds of experimental samples were prepared. The fire environment was simulated by the stored energy test instrument, and the minimum exposure time(MET) of the experimental samples was recorded. The influences of the length, wall thickness and core thickness of the 6 honeycomb types on MET of the experimental samples were investigated. The results show that the weight of the thermal liner can be reduced by up to 64%, and the MET is increased by up to 10 s. As the wall thickness of the honeycomb hole type increases, the MET also increases. The core thickness is positively correlated with the MET, and the side length of the hole is negatively correlated with the MET.

Key words: stored thermal energy, honeycomb hole type, fireproof clothing, thermal liner, thermal protection performance

CLC Number: 

  • TS941.73

Tab.1

Fabric samples and fundamental characteristics"

面料
编号
产品名称 颜色 面密度/
(g·m-2)
厚度/
mm
透气率/
(L·m-2·s-1)
A Nomex?IIIA 藏青色 211.6 0.5 206.57
B T-70/PTFE 浅黄+白色 106.1 0.6 0.84
C1 I-70毡Nomex 浅黄 72.3 0.6 1 658.02
C2 I-120毡Nomex 浅黄 128.4 1.0 1 087.65
C3 I-150毡Nomex 浅灰 151.3 1.5 988.50
D 阻燃粘胶 浅灰 125.6 0.3 1 262.45

Fig.1

Honeycomb sandwich structure for fireproof clothing"

Tab.2

Parameters of honeycomb structure"

蜂窝孔型
结构编号
孔型边长/
mm
壁厚/
mm
质量减轻
百分比/%
E1 实心 实心
E2 3 2.6 44.2
E3 3 5.2 25.1
E4 6 2.6 64.2
E5 6 5.2 44.4
E6 9 5.2 56.2
E7 9 7.8 44.4

Tab.3

Experimental scheme design"

实验编号 外层 防水透气层 隔热层 舒适层 孔型方案
1 A B C1 D E1
2 A B C1 D E2
3 A B C1 D E3
4 A B C1 D E4
5 A B C1 D E5
6 A B C1 D E6
7 A B C1 D E7
8 A B C2 D E1
9 A B C2 D E2
10 A B C2 D E3
11 A B C2 D E4
12 A B C2 D E5
13 A B C2 D E6
14 A B C2 D E7
15 A B C3 D E1
16 A B C3 D E2
17 A B C3 D E3
18 A B C3 D E4
19 A B C3 D E5
20 A B C3 D E6
21 A B C3 D E7

Fig.2

Stored thermal energy test apparatus"

Tab.4

Areal density of honeycomb core layerg/m2"

蜂窝孔型结构编号 C1 C2 C3
E1 72.3 128.4 151.3
E2 40.5 71.7 84.6
E3 54.2 96.0 113.2
E4 26.0 46.1 54.4
E5 40.1 71.0 83.8
E6 31.8 56.3 66.4
E7 40.5 71.7 84.6

Tab.5

Correlation of side length and MET"

指标 类别 边长 热暴露时间
Pearson相关性边长 1 -0.993
边长 显著性(双尾) 0.075
N 3 3
Pearson相关性 -0.993 1
热暴露时间 显著性(双尾) 0.075
N 3 3

Fig.3

MET of different wall thickness at different side length"

Fig.4

MET of different sandwich thickness combinations"

Tab.6

Correlation of core thickness and MET"

指标 类别 芯厚 热暴露时间
Pearson相关性 1 0.959
芯厚 显著性(双尾) 0.182
N 3 3
Pearson相关性 0.959 1
热暴露时间 显著性(双尾) 0.182
N 3 3
[1] DEUSER L, BARKER R, DEATON A S, et al. Interlaboratory study of ASTM F2731, standard test method for measuring the transmitted and stored energy of firefighter protective clothing systems[J]. Journal of ASTM International, 2012,9(3):188-201.
[2] 祝文婷, 刘茜. 相变纺织材料的研究进展及其评价方法[J]. 时尚设计与工程, 2016(2):38-48.
ZHU Wenting, LIU Qian. Research and evaluation methods for the phase change of textile materials[J]. Fashion Design and Engineering, 2016 (2):38-48.
[3] 张芳, 范艳苹, 陆少锋, 等. 相变微胶囊在纺织品上的研究进展[J]. 针织工业, 2018(7):42-45.
ZHANG Fang, FAN Yanping, LU Shaofeng, et al. Research progress of phase change microencapsulated materials in textile industry[J]. Knitting Industries, 2018(7):42-45.
[4] GENG Xiaoye, LI Wei, WANG Yu, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018(2):281-294.
[5] SONG G, CAO W, GHOLAMREZA F. Analyzing stored thermal and thermal protective performance[J]. Textile Research Journal, 2011,81(11):1124-1138.
[6] ENI E U. Developing test procedures for measuring stored thermal energy in firefighter protective cloth-ing[D]. North Carolina: North Carolina State University, 2005: 1-53.
[7] HE Jiazhen, LU Yehu, CHEN Yan, et al. Investigation of the thermal hazardous effect of protective clothingcaused by stored energy discharge[J]. Journal of Hazardous Materials, 2017,338:76-84.
doi: 10.1016/j.jhazmat.2017.05.012 pmid: 28531661
[8] SU Yun, HE Jiazhen, LI Jun. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016 ( 93):1295-1303.
[9] BARKER L, DEATON S, ROSS A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011,47(3):549-563.
[10] 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016,37(6):171-176.
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016,37(6):171-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!