Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (12): 16-20.doi: 10.13475/j.fzxb.20181106905

• Fiber Materials • Previous Articles     Next Articles

Influence of spinning process on property of parallel composite polyester fiber

LI Mingming1, CHEN Ye1(), LI Xia1, WANG Huaping1,2   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. Research Institute, Donghua University, Shanghai 201620, China
  • Received:2018-11-26 Revised:2019-05-13 Online:2019-12-15 Published:2019-12-18
  • Contact: CHEN Ye E-mail:chenye@dhu.edu.cn

Abstract:

In order to compare the influences of drawing and heat treatment processes on the properties of parallel composite fibers by different spinning processes, conventional polyester (PET) and bottle-grade PET were used as raw materials. Parallel composite fibers were prepared by two processes, including subjecting pre-oriented yarn (POY) to drawing and twisting (DT) to obtain POY-DT, and preparing full-stretching yarn (FDY) by a one-step process. The fiber crimping property, dimensional stability and the differences in mechanical properties under different heat treatment methods were compared. The results show that the overall crimping performance of FDY is better than that of POY-DT, and the sound velocity orientation factor of FDY is 0.87, obviously better than 0.43 of POY-DT, and the crystallinity is about 30%. The boiling water shrinkage ratio of FDY after boiling water treatment is 8.3%, significantly lower than 12.9% of POY-DT, but the shrinkage of FDY will further occur along with time, while relatively stable-dimension fiber filaments can be obtained from POY-DT after boiling water treatment. The influences of different heat treatment on the mechanical properties of the fiber are different, dry heat treatment is suitable for POY-DT, and wet heat treatment is suitable for FDY.

Key words: polyester, parallel composite fiber, fully drawn yarn, pre-oriented yarn-drawing and twisting, crimping property, spinning process

CLC Number: 

  • TQ342.22

Tab.1

Sample raw material properties"

原料名称 [η]/(dL·g-1) Tg/℃ Tc/℃ Tm/℃
常规PET 0.67 83.8 189.2 242.1
瓶级PET 0.87 81.1 152.1 228.8

Fig.1

Schematic diagram of parameters of 8-shaped orifice"

Tab.2

Process parameters of primary POY fiber spinning℃"

原料
名称
纺丝温度 箱温 联苯气
相温度
联苯液
相温度
冷凝
温度
一区 二区 三区 四区
常规PET 290 295 295 290 294 295 297 293
瓶级PET 291 299 300 303

Tab.3

FDY spinning process℃"

原料
名称
纺丝温度 箱温 联苯气
相温度
联苯液
相温度
冷凝
温度
一区 二区 三区 四区
常规PET 281 295 293 295 296 297 301 296
瓶级PET 284 294 293 298

Tab.4

FDY drafting process"

辊1转速/
(m·min-1)
辊2转速/
(m·min-1)
辊1温
度/℃
辊2温
度/℃
卷绕辊速度/
(m·min-1)
线密度/
dtex
卷绕张力/
(cN·dtex-1)
1 800 3 430 100 140 3 250 170 5.4

Fig.2

Two kinds of parallel composite fiber crimped structure. (a)POY-DT without boiling water treatment;(b)FDY without boiling water treatment;(c)POY-DT in boiling water treatment;(d)FDY in boiling water treatment;(e)POY-DT microstructure(×30);(f)FDY microstructure(×30)"

Tab.5

Crimp properties of two kinds of fiber after heat treatment%"

纤维名称 卷曲率 卷曲弹性率 卷曲回复率
POY-DT 86.9 22.5 20.6
FDY 91.5 29.1 28.2

Tab.6

Difference between immediate shrinkage ratio and long-term shrinkage ratio of two kinds of fibers%"

纤维名称 12 h 24 h 72 h 168 h
POY-DT 0.1 0.3 -0.4 -0.5
FDY 0.0 0.7 1.8 2.0

Tab.7

Mechanical properties of two kinds of fibers after heat treatment, heat and humidity treatment"

处理方式 POY-DT FDY
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
未处理 2.53 19.11 2.96 11.13
干热处理 2.39 25.62 2.48 13.10
湿热处理 2.15 35.19 2.65 15.97
[1] OH T H. Melt spinning and drawing process of PET side-by-side bicomponent fibers[J]. Journal of Applied Polymer Science, 2006,101(3):1362-1367.
[2] 沈新元. 高分子材料加工原理[M]. 北京: 中国纺织出版社, 2009: 224-236.
SHEN Xinyuan. Principle of Polymer Material Processing[M]. Beijing: China Textile & Apparel Press, 2009: 224-236.
[3] 李夏. 并列复合聚酯弹性纤维的制备及结构性能研究[D]. 上海:东华大学, 2014: 12-14.
LI Xia. Preparation and investigation of the properties of side-by-side bi-component polyester fiber[D]. Shanghai:Donghua University, 2014: 12-14.
[4] 张明成. 3组分FDY混纤技术的研究[J]. 聚酯工业, 2015(6):12-15.
ZHANG Mingcheng. Study on the mixed fiber technology of three-component FDY[J]. Polyester Industry, 2015(6):12-15.
[5] 孙莉娜, 贺梦娟, 黄琪轩, 等. 一步法POY/FDY涤纶异收缩混纤丝空气变形加工及其纱线性能[J]. 东华大学学报(自然科学版): 2019,45(2):221-227.
SUN Lina, HE Mengjuan, HUANG Qixuan, et al. Processing and properties of air-jet textured yarn of one-step POY/FDY polyester differential shrinkage blended filaments[J]. Journal of Donghua University (Natural Science Edition): 2019,45(2):221-227.
[6] 张明成, 王兴柏. 20头66 dtex/3 f有光三角涤纶FDY纺丝技术[J]. 聚酯工业, 2018,31(3):8-10.
ZHANG Mingcheng, WANG Xingbai. 20 ends 66 dtex/3 f bright triangular polyester FDY spinning techno-logy[J]. Polyester Industry, 2018,31(3):8-10.
[7] 张大省, 周静宜. 双组分并列复合纤维的弹性形成机理[J]. 纺织导报, 2016(12):46-51.
ZHANG Dasheng, ZHOU Jingyi. The mechanism for the formation of the elasticity of side-by-side bicomponent fibers[J]. China Textile Leader, 2016(12):46-51.
[8] 周静宜, 张大省, 王春梅, 等. 并列复合纤维热收缩差异的形成与控制[J]. 合成纤维工业, 2015,38(1):7-10.
ZHOU Jingyi, ZHANG Dasheng, WANG Chunmei, et al. Formation and control of differential thermal shrinkage of side-by-side bicomponent fibers[J]. China Synthetic Fiber Industry, 2015,38(1):7-10.
[9] 施楣梧, 肖红. PET/PTT双组分弹性长丝的结晶取向结构和卷曲性能[J]. 高分子通报, 2009(1):37-44.
SHI Meiwu, XIAO Hong. The crystallinity and oritetation structures and crimp properties of PET/PTT bicomponent filament[J]. Chinese Polymer Bulletin, 2009(1):37-44.
[10] 张程, 周静宜, 王锐, 等. COPEET/HSPET并列复合纤维结晶和热收缩性能的研究[J]. 合成纤维工业, 2015,38(1):24-28.
ZHANG Cheng, ZHOU Jingyi, WANG Rui, et al. Crystallinity and thermal shrinkage properties of COPEET/HSPET side-by-side bicomponent fiber[J]. China Synthetic Fiber Industry, 2015,38(1):24-28.
[11] 郭静, 于春芳, 牟思阳, 等. PET/PTT和PET/PBT复合纤维的性能[J]. 大连工业大学学报, 2015(6):463-466.
GUO Jing, YU Chunfang, MU Siyang, et al. Properties of PET/PTT and PET/PBT bicomponent filaments[J]. Journal of Dalian Polytechnic University, 2015(6):463-466.
[12] 刘冰倩, 盛丹, 龚小宝, 等. 湿/热处理对狗绒纤维结构和性能的影响[J]. 纺织学报, 2019,40(1):25-31.
LIU Bingqian, SHENG Dan, GONG Xiaobao, et al. Influence of wet/heat treatment on structure and properties of dog hair[J]. Journal of Textile Research, 2019,40(1):25-31.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[3] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[4] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[5] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[6] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[7] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester / cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[8] LIU Guojin, HAN Pengshuai, CHAI Liqin, WU Yu, LI Hui, GAO Yafang, ZHOU Lan. Preparation and stability of self-crosslinking P(St-NMA) photonic crystals with structural colors on polyester fabrics [J]. Journal of Textile Research, 2020, 41(05): 99-104.
[9] JI Hong, ZHANG Yang, CHEN Kang, SONG Minggen, JIANG Quan, FAN Yonggui, ZHANG Yumei, WANG Huaping. Developing black high-tenacity polyester yarns based on dynamic characteristics [J]. Journal of Textile Research, 2020, 41(04): 1-8.
[10] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole / silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[11] LIN Jiameng, WAN Ailan, MIAO Xuhong. Preparation and properties of polypyrrole / silver conductive polyester fabrics [J]. Journal of Textile Research, 2020, 41(03): 113-117.
[12] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[13] XING Dandan, WANG Ni, LIU Huyi, GAN Xuehui, SHI Meiwu. Characterization on distribution of TiO2 particles in opaque polyester and dull nylon filaments [J]. Journal of Textile Research, 2020, 41(02): 33-38.
[14] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene / polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[15] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!