Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 125-129.doi: 10.13475/j.fzxb.20190104905

• Apparel Engineering • Previous Articles     Next Articles

Balancing optimization of garment sewing assembly line based on genetic algorithm

ZHANG Xujing, WANG Lichuan, CHEN Yan()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2019-01-22 Revised:2019-06-28 Online:2020-02-15 Published:2020-02-21
  • Contact: CHEN Yan E-mail:yanchen@suda.edu.cn

Abstract:

In order to solve the problem of efficiency loss caused by the imbalance of the garment sewing assembly line, an optimization goal was established to minimize the balance loss rate. The genetic algorithm was used to obtain the result. The men's shirt assembly lines of three kind of workstation layouts (the order of processes, the type of machines and the components of garment) were taken as examples for application. The results show that there are 14 workstations in the assembly lines where the workstations are arranged according to the processes and machines. There are 15 workstations in the assembly line that the workstations are arranged according to the garment components. And the number of operators and machines required are more than the other two kinds of workstation layouts. The time loss rate of the workstations arranged according to the processes is 8.74%. The time loss rate of the workstations arranged according to the machines is 11.79%. And the time loss rate of the workstations arranged according to the garment components is 20.32%, but it is still higher than the lowest line of the enterprise. It can be seen from the simulation model that the optimized assembly lines of three workstation layouts can be applied to actual production, which can effectively reduce the production cost of the enterprise.

Key words: genetic algorithm, sewing assembly line balancing, workstation layout, men's shirt, time loss rate

CLC Number: 

  • TS941

Fig.1

Flow chart of genetic algorithm"

Tab.1

Men's shirt process sheet"

工序编号 工序名称 工序设备 作业时间/s
1 扣门襟贴边 电蒸汽熨斗 20
2 锁门襟扣眼 锁眼机 10
3 钉扣 钉扣机 14
4 折口袋 折口袋机 30
5 钉口袋 平缝自动剪线机 27
6 剪扣商标 商标剪扣机 2
7 剪扣尺寸标牌 商标剪扣机 2
8 钉商标尺寸标牌 平缝自动剪线机 25
9 绱过肩 平缝自动剪线机 22
10 合肩 平缝自动剪线机 20
11 拼接袖衩 平缝自动剪线机 10
12 绱袖衩 平缝自动剪线机 18
13 烫袖子 多用烫衣机 10
14 绱袖子 五线包缝机 21
15 剪扣洗涤标牌 商标剪扣机 2
16 钉洗涤标牌 平缝自动剪线机 20
17 合袖底侧缝 五线包缝机 30
18 窝底边 平缝自动剪线机 22
19 黏翻领衬 电蒸汽熨斗 18
20 熔解黏合衬 黏合机 5
21 夹领尖 高速带刀平缝自动剪线机 20
22 翻领尖 翻领机 10
23 烫领尖 领角定型机 20
24 熨烫翻领 电蒸汽熨斗 12
25 缉翻领明线 平缝自动剪线机 18
26 翻领定型 衬衫圆领机 6
27 剪翻领 上下切领机 10
28 黏底领衬 电蒸汽熨斗 7
29 缉底领明线 平缝自动剪线机 8
30 合领子 平缝自动剪线机 16
31 翻烫底领 电蒸汽熨斗 18
32 缉底领上口明线 平缝自动剪线机 6
33 净底领 切底领机 7
34 点领子三眼 手工台 10
35 绱领子 平缝自动剪线机 20
36 缉领子下口明线 平缝自动剪线机 40
37 黏袖克夫衬 电蒸汽熨斗 30
38 勾袖克夫 平缝自动剪线机 16
39 扣袖克夫 电蒸汽熨斗 10
40 翻烫袖克夫 定型压烫机 15
41 缉袖克夫上口明线 平缝自动剪线机 10
42 缉袖克夫明线 平缝自动剪线机 12
43 锁袖克夫扣眼 锁眼机 8
44 钉袖克夫扣 钉扣机 10
45 绱袖克夫 平缝自动剪线机 40
46 翻袖子 手工台 7
47 锁领头扣眼 锁眼机 15
48 钉领头扣子 钉扣机 12

Tab.2

Optimization results of genetic algorithm"

工作地
布置方式
种群数50,迭代次数200 种群数80,迭代次数500 种群数100,迭代次数500 种群数100,迭代次数800
工作地数量 时间损耗率/% 工作地数量 时间损耗率/% 工作地数量 时间损耗率/% 工作地数量 时间损耗率/%
工序流程 25 25.71 18 15.85 14 8.74 14 8.74
工艺种类 25 26.89 19 18.61 14 11.79 14 11.79
服装部件 28 32.75 22 24.45 15 20.32 15 20.32

Tab.3

Assembly line balancing schemes for different workstation layouts"

工作地
编号
工序流程 工艺种类 服装部件
工序
编号
加工时
间/s
设备
数量/台
工序
编号
加工时
间/s
设备
数量/台
工序
编号
加工时
间/s
设备
数量/台
1 1,37,6,7,15 56 2 5,41,21 57 2 5,8 52 1
2 2,43,47,27,33 50 3 18,35,42 54 1 1,3,9 56 3
3 3,44,48,22 46 2 25,36 58 1 2,4,6,7 44 3
4 4,19,46 55 3 10,11,38 46 1 23,26,27,29 44 4
5 5,9 49 1 29,45 48 1 19,31,22,33 53 3
6 8,11,18 57 1 9,12,16 60 1 21,24,28,34 49 3
7 10,12,16 58 1 8,30,32 47 1 20,25,30,32 45 2
8 14,17 51 1 19,37,34 48 2 37,41,43 48 3
9 13,20,23,26,40 56 5 4,24,28,39 59 2 12,38,42,39 56 2
10 21,30,38 52 2 1,31,6,7,15,46 51 3 11,13,40,44 45 4
11 24,28,31,39,34 57 2 2,43,47,22 43 2 35,36 60 1
12 25,29,32,35 52 1 14,17 51 1 18,45 62 1
13 36,41 50 1 3,44,48,27,33 53 3 14,16,46 48 3
14 42,45 52 1 13,20,23,26,40 56 5 10,15,48 34 3
15 17,47 45 2

Tab.4

Objective values for different workstation layouts"

工作地布置方式 时间损耗率/%
未优化 74.27
工序流程 8.74
工艺种类 11.79
服装部件 20.32

Tab.5

Simulation results of assembly lines with different workstation layouts"

工作地布置方式 日产量/(件·d-1) 设备平均利用率/%
未优化 482 36.9
工序流程 488 82.8
工艺种类 490 90.6
服装部件 519 88.3
[1] CHEN J C, CHEN C C, SU L H, et al. Assembly line balancing in garment industry[J]. Expert Systems with Applications, 2012,39(11):10073-10081.
[2] AGPAK K, GOKCEN H. Assembly line balancing: two resource constrained cases[J]. International Journal of Production Economics, 2005,96:129-140.
[3] BECKER C, SCHOLL A. A survey on problems and methods in generalized assembly line balancing[J]. European Journal of Operational Research, 2006,168:694-715.
doi: 10.1016/j.ejor.2004.07.023
[4] BOYSEN N, FLIEDNER M, SCHOLL A. A classification of assembly line balancing problems[J]. European Journal of Operational Research, 2007,183:674-693.
doi: 10.1016/j.ejor.2006.10.010
[5] ERYÜRÜK S H. Clothing assembly line design using simulation and heuristic line balancing techniques[J]. Tekstil ve Konfeksiyon, 2012,22(4):360-368.
[6] FATHI M, ALVAREZ M J, RODRGUEZ V. A new heuristic approach to solving U-shape assembly line balancing problems type-1[J]. World Academy of Science, Engineering and Technology, 2011,59:413-421.
[7] 楼亚芳, 张祖芳. 基于虚拟仿真的服装缝制流水线优化[J]. 纺织学报, 2006,27(6):55-57.
LOU Yafang, ZHANG Zufang. Optimization of garment sewing lines scheduling based on virtual simulation[J]. Journal of Textile Research, 2006,27(6):55-57.
[8] WONG W K, MOK P Y, LEUNG S Y S . Developing a genetic optimization approach to balance an apparel assembly line[J]. The International Journal of Advanced Manufacturing Technology, 2006,28(3):387-394.
doi: 10.1007/s00170-004-2350-x
[9] CHEN J C, HSAIO M H, CHEN C C, et al. A grouping genetic algorithm for the assembly line balancing problem of sewing lines in garment industry[C]// Proceeding of 2009 international conference on machine learning and cybernetics. Baoding: IEEE, 2009: 2811-2816.
[10] ZAMAN T, PAUL S K, AZEEM A. Sustainable operator assignment in an assembly line using genetic algo-rithm[J]. International Journal of Production Research, 2012,18:5077-5084.
doi: 10.1080/00207543.2011.636764
[11] GUO Z X, WONG W K, LEUNG S Y S , et al. Mathematical model and genetic optimization for the job shop scheduling problem in a mixed-and multi-product assembly environment: a case study based on the apparel industry[J]. Computers & Industrial Engineering, 2006(3):202-219.
[1] ZHANG Zhuo, CONG Honglian, JIANG Gaoming, DONG Zhijia. Polo shirt rapid style recommendation system based on interactive genetic algorithm [J]. Journal of Textile Research, 2021, 42(01): 138-144.
[2] LI Liang, NI Junfang. Automatic generation algorithm for pattern processing codes of quilting machines [J]. Journal of Textile Research, 2020, 41(11): 162-167.
[3] XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line [J]. Journal of Textile Research, 2020, 41(10): 144-149.
[4] ZHANG Xiaoxia, LIU Fengkun, MAI Wei, MA Chongqi. Prediction of loom efficiency based on BP neural network and its improved algorithm [J]. Journal of Textile Research, 2020, 41(08): 121-127.
[5] HUANG Zhenzhen, MOK Pikyin, WEN Lihong. Garment production line balance based on genetic algorithm and simulation [J]. Journal of Textile Research, 2020, 41(07): 154-159.
[6] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[7] MO Shuai, FENG Zhanyong, TANG Wenjie, DANG Heyu, ZOU Zhenxing. Performance optimization of elastic spindle pipe based on neural network and genetic algorithm [J]. Journal of Textile Research, 2020, 41(04): 161-166.
[8] HUANG Qi, ZHOU Qihong, ZHANG Qian, WANG Shaozong, FAN Wei, SUN Huifeng. Layout optimization of dip dyeing workshop based on system layout planning-genetic algorithm [J]. Journal of Textile Research, 2020, 41(03): 84-90.
[9] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[10] MENG Shuo, PAN Ruru, GAO Weidong, WANG Jing'an, ZHOU Lijun. Research on weaving scheduling using main objective evolutionary genetic algorithm [J]. Journal of Textile Research, 2019, 40(08): 169-174.
[11] . Optimum and application of automatic cotton blending based on high volume instrument data by improved genetic algorithm [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 151-155.
[12] . Worsted spinning process parameters inversion model using mixed population genetic neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(07): 149-154.
[13] LIU Gui;YU Weidong. Worsted roving forecast based on genetic algorithm and BP neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(05): 28-33.
[14] CHEN Jianneng;ZHAO Xiong;ZHANG Guofeng;ZHAO Yun. Parameter optimization of a new weft insertion mechanism based on improved NSGA-Π [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(1): 110-113.
[15] SUN Ying;LI Jialu;KANG Yilan;CHEN Li. Stiffness optimization of 3-D braided composites with micromechanical method [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(5): 70-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!