Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 143-148.doi: 10.13475/j.fzxb.20190408806

• Machinery & Accessories • Previous Articles     Next Articles

Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine

WANG Jiandong1, XIA Fenglin1,2(), LI Yalin1, ZHAO Yuning1   

  1. 1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University,Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University),Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2019-04-30 Revised:2019-08-10 Online:2020-02-15 Published:2020-02-21
  • Contact: XIA Fenglin E-mail:xiafl_622@163.com

Abstract:

In order to solve the problem that the warp knitting electronic traverse system is easy to be interfered by external mechanical vibration and other factors, the electric drive mechanism and mechanical drive structure are modeled, according to the warp knitting machine transverse control principle, and the spatial mathematical model of the warp knitting electronic transverse system was constructed based on the input-output relationship. Using the performance index of linear optimal control theory and sliding mode control theory, the optimal sliding mode control method for warp knitting electronic transversal motion system was designed. Through MatLab simulation, the results show that when there is no external interference, the optimal sliding mode control has good dynamic and static performance. When there is disturbance outside the servo system, the optimal sliding mode control can overcome the disturbance within a limited time. By comparing the reference model, the accuracy and stability of the optimal sliding mode control are verified in the simulation of unit step response.

Key words: warp knitting machine, electronic transverse shift system, optimal sliding mode control, MatLab simulation

CLC Number: 

  • TS183.92

Fig.1

Working principle of electronic transverseshift system"

Fig.2

Physical model of AC servo motor"

Fig.3

Mechanical transmission model"

Fig.4

Sliding mode switching surface"

Tab.1

Main performance parameters of TBL-iⅡ type servo motor"

额定功率Pn/kW 0.75
额定转速Nn/(r·min-1) 3000
额定转矩Tn/(N·m) 2.39
永磁磁通ψf/Wb 0.125
转动惯量Jm/(kg·m2) 1.06×10-4
定子电阻Rs 1.3
定子电感Ls/mH 7.8
阻尼系数B/(kg·m2·s-1) 0.8
电动机转矩常数Kτ/(N·M·A-1) 0.5

Tab.2

Mechanical transmission mechanism parameters"

扭转刚度KL/(N·m·rad-1) 0.25
负载惯量JL/(km·m2) 2.42×10-4
黏滞阻尼系数fL/(a·N·m·rad-1) 0.25
丝杠导程Pb/mm 10

Fig.5

Simulation results of two systems. (a) Position response curve of two systems without interference; (b) Position response curve of optimal linear control system when interference is added; (c) Position response curve of optimal sliding mode control system when interference is added"

Fig.6

Unit step response curve of system"

[1] 殷明跃, 夏风林, 张琦, 等. 基于前馈控制的经编机横移系统高速定位[J]. 纺织学报, 2011,32(11):126-130.
YIN Mingyue, XIA Fenglin, ZHANG Qi, et al. High-speed positioning of warp knitting machine horizontal movement system based on feedforward control[J]. Journal of Textile Research, 2011,32(11):126-130.
[2] 张琦. 高动态响应的经编机电子横移系统研究[D]. 无锡:江南大学, 2013: 13-56.
ZHANG Qi. Research on electronic transverse motion system of warp knitting machine with high dynamic response[D]. Wuxi: Jiangnan University, 2013: 13-56.
[3] 郑静, 夏风林, 刘浪. 基于Simulink的经编机电子横移系统仿真[J]. 纺织学报, 2018,39(2):150-156.
ZHENG Jing, XIA Fenglin, LIU Lang. Simulation of electronic transverse motion of warp knitting machine based on Simulink[J]. Journal of Textile Research, 2008,39(2):150-156.
[4] 闻霞, 吴龙, 晋芳伟. 电子横移伺服LQR最优控制器设计[J]. 自动化仪表, 2014,35(9):50-53.
WEN Xia, WU Long, JIN Fangwei. Design of LQR optimal controller for electronic transverse motion servo[J]. Automation Instrument, 2014,35(9):50-53.
[5] 邵友. 永磁同步电机的变结构MRAS转速辨识[J]. 电机与控制应用, 2012,39(5):22-26, 40.
SHAO You. Variable structure MRAS speed identification of permanent magnet synchronous motor[J]. Motor and Control Applications, 2012,39(5):22-26, 40.
[6] 高军涛. 经编机电子横移系统数学模型的研究与仿真[J]. 现代电子技术, 2012,35(12):169-172.
GAO Juntao. Research and simulation of mathematical model of electronic transverse motion system of warp knitting machine[J]. Modern Electronic Technology, 2012,35(12):169-172.
[7] 孔震, 蒋高明, 夏风林. 高速经编机电子横移原理探讨[J]. 针织工业, 2007(9):12-14.
KONG Zhen, JIANG Gaoming, XIA Fenglin. Discussion on electronic transverse movement principle of high-speed warp knitting machine[J]. Knitting Industries, 2007(9):12-14.
[8] 仇正周. 高速经编机电子横移的动态响应特性研究[D]. 无锡:江南大学, 2010: 11-31.
QIU Zhengzhou. Dynamic response characteristics of electronic transverse motion of high-speed warp knitting machine[D]. Wuxi: Jiangnan University, 2010: 11-31.
[9] 王艳敏, 王常虹, 冯勇. 具有逆变器死区补偿的永磁同步电动机滑模控制[J]. 吉林大学学报(工学版)2010, 40(4):1096-1101.
WANG Yanmin, WANG Changhong, FENG Yong. Sliding mode control of permanent magnet synchronous motor with dead zone compensation of inverter[J]. Journal of Jilin University (Engineering Science Edition), 2010,40(4):1096-1101.
[10] 董朝阳, 陈宇, 王青, 等. 基于积分滑模的BTT导弹鲁棒反演控制律设计[J]. 航空兵器, 2011(1):3-8,12.
DONG Chaoyang, CHEN Yu, WANG Qing, et al. Design of robust inversion control law for BTT missile based on integral sliding mode[J]. Aviation Weapon, 2011(1):3-8,12.
[1] GUO Weidong, XIA Fenglin, ZHANG Qi. Influencing factors on high speed of electronic shogging system in warp knitting machines [J]. Journal of Textile Research, 2021, 42(01): 162-166.
[2] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[3] ZHANG Qi, WEI Li, LUO Cheng, XIA Fenglin, JIANG Gaoming. Double jacquard control system of warp knitting machine based on dual bus architecture [J]. Journal of Textile Research, 2019, 40(07): 145-150.
[4] XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine [J]. Journal of Textile Research, 2019, 40(06): 106-110.
[5] ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network [J]. Journal of Textile Research, 2019, 40(01): 52-56.
[6] . Algorithm of processing code generation for pattern spline curves [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 153-158.
[7] . Simulation of electronic shogging system on warp knitting machine based on Simulink [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 150-156.
[8] . Knitting motions for multi-bar warp knitting machine driven by E-cam [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 127-133.
[9] . Design of embedded electronic jacquard control system [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 135-140.
[10] . Construction of radial basis function neural network models for typical cross section curve of shorts [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 83-88.
[11] . Analysis of shogging motion of guide bars on warp knitting machines [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 121-125.
[12] . Research on dynamic variable structure control strategy for high-speed electronic shogging motion on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 121-126.
[13] LIU Xin, HU Xu-Dong, CHEN Hong-Li. Dynamic analysis of warp knitting swing machine guide bar swing mechanism based on flexible multi-body system [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 92-96.
[14] ZHENG Bao-Ping, JIANG Gao-Ming, XIA Feng-Lin, ZHANG Qi, QIN Wen. Design of electronic shogging system based on double PID control on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 135-139.
[15] . Model-building for slot needles’six-bar linkage of high speed warp knitting machine based on UG [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(12): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!