Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 165-171.doi: 10.13475/j.fzxb.20190100507

• Comprehensive Review • Previous Articles     Next Articles

Research progress of electrospun nanofiber yarns

LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi(), YANG Weimin   

  1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2019-01-04 Revised:2019-04-22 Online:2020-02-15 Published:2020-02-21
  • Contact: LI Haoyi E-mail:lhy@mail.buct.edu.cn

Abstract:

In order to expand the application field of electrospinning nanofibers and improve the mechanical properties of electrospinning nanofibers, the recent research progress of electrospinning nanofibers yarns at home and abroad was reviewed. According to the different twisting methods, the fiber twisting methods are divided into flow field twisting, electric field twisting and mechanical twisting. Several twisting methods are introduced in detail, and the yarn performance parameters and the advantages and disadvantages of these methods are compared. The influence of electrospinning process parameters on the yarn mechanical properties is discussed, and several methods to improve the mechanical properties of nanofiber yarns are introduced. The applications of electrospinning nanofibers yarn in intelligent fabrics, bioengineering and electronic devices are summarized. Finally, the problems existing in electrospinning nanofibers yarn and the future development trend are prospected.

Key words: electrospinning, nanofiber, yarn, intelligent fabric, bioengineering

CLC Number: 

  • TS154.7

Fig.1

Twisting method of electrospun nanofibers. (a) Funnel twisted nanofibers; (b) Double disc twisted nanofibers; (c)Twisting nanofibers with charged metal rods; (d) Twisted nanofibers with two electrodes; (e) Water-twisted; (f) Air-twisted"

Tab.1

Effect of process on twisting performance"

工艺参数 断裂强度 断裂伸长率
溶液浓度增加 减小 先增后减
纺丝电压增加 先增后减 先增后减
流量增加 先增后减 增大
纺丝距离增加 增大 先增后减
[1] SCHIFFMAN J D, SCHAUER C L. A review: electrospinning of biopolymer nanofibers and their applications[J]. Polymer Reviews, 2008,48(2):317-352.
[2] TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies.[J]. Nanotechnology, 2006,17(14):R89.
doi: 10.1088/0957-4484/17/14/R01 pmid: 19661572
[3] 杨卫民, 李好义, 阎华, 等. 纳米纤维静电纺丝[M]. 北京:化学工业出版社, 2018: 26-27
YANG Weimin, LI Haoyi, YAN Hua, et al. Electrospinning of nanofiber[M]. Beijing:Chemical Industry Press, 2018: 26-27
[4] RAMAKRISHNA S, JOSE R, ARCHANA P S, et al. Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine[J]. Journal of Materials Science, 2010,45(23):6283-6312.
[5] GOPAL R, KAUR S, MA Z, et al. Electrospun nanofibrous filtration membrane[J]. Journal of Membrane Science, 2006,281(1):581-586.
[6] WANG Z, LI Z, JIANG T, et al. Ultrasensitive hydrogen sensor based on Pd()-loaded SnO2 electrospun nanofibers at room temperature[J]. Acs Applied Materials & Interfaces, 2013,5(6):2013-2021.
doi: 10.1021/am3028553 pmid: 23446459
[7] REZVANI Z, VENUGOPAL J R, URBANSKA A M, et al. A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends[J]. Nanomedicine Nanotechnology Biology & Medicine, 2016,12(7):2181-2200.
[8] 张艳萍, 张莉彦, 马小路, 等. 无针静电纺丝技术工业化进展[J]. 塑料, 2017(2):1-4.
ZHANG Yanping, ZHANG Liyan, MA Xiaolu, et al. Progress in industrialization of needle-free electrospinning technology[J]. Plastics, 2017(2):1-4.
[9] MALEKI H, GHAREHAGHAJI A A, MORONI L, et al. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns[J]. Biofabrication, 2013,5(3):035014.
doi: 10.1088/1758-5082/5/3/035014 pmid: 23945472
[10] MA X, ZHANG L, TAN J, et al. Continuous manufacturing of nanofiber yarn with the assistance of suction wind and rotating collection via needleless melt electrospinning[J]. Journal of Applied Polymer Science, 2017,134(20):44820.
[11] BOLAND E, WNEK G, SIMPSON D, et al. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning[J]. Journal of Macromolecular Science: Part A - Chemistry, 2001,38(12):13.
[12] 马小路, 张莉彦, 何万林, 等. 无针熔体电纺PLA纳米纤维捻线的制备[J]. 塑料, 2017(2):13-16.
MA Xiaolu, ZHANG Liyan, HE Wanlin, et al. Preparation of needle-free melt electrospun PLA nanofibers twist[J]. Plastics, 2017(2):13-16.
[13] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique.[J]. Biotech Adv, 2010,28(3):325-347.
doi: 10.1016/j.biotechadv.2010.01.004
[14] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science & Technology, 2003,63(15):2223-2253.
[15] SHUAKAT M N, LIN T. Recent developments in electrospinning of nanofiber yarns[J]. Journal of Nanoscience & Nanotechnology, 2014,14(2):1389.
doi: 10.1166/jnn.2014.9197 pmid: 24749431
[16] LEVITT A S, VALLETT R, DION G, et al. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns[J]. Journal of Applied Polymer Science, 2018,135:46404.
[17] DALTON P D, KLEE D, MÖLLER M. Electrospinning with dual collection rings[J]. Polymer, 2005,46(3):611-614.
[18] YAN H, LIU L, ZHANG Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers[J]. Materials Letters, 2011,65(15/16):2419-2421.
[19] DABIRIAN F, HOSSEINI Y, HOSSEINIRAVANDI S A. Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn[J]. Journal of the Textile Institute Proceedings & Abstracts, 2007,98(3):237-241.
[20] HAJIANI F, JEDDI A A A . An investigation on the effects of twist on geometry of the electrospinning triangle and polyamide 66 nanofiber yarn strength[J]. Fibers & Polymers, 2012,13(2):244-252.
[21] TEO W E, GOPAL R, RAMASESHAN R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007,48(12):3400-3405.
doi: 10.1016/j.polymer.2007.04.044
[22] YOUSEFZADEH M, LATIFI M, WEE-EONG T, et al. Producing continuous twisted yarn from well-aligned nanofibers by water vortex[J]. Polymer Engineering & Science, 2011,51(2):323-329.
[23] 马小路. 聚合物熔体微分静电纺丝纳米捻线制备研究[D]. 北京:北京化工大学, 2017: 10-11.
MA Xiaolu. Study on preparation of polymer melt differential electrospinning nanotwist[D]. Beijing: Beijing University of Chemical Technology, 2017: 10-11.
[24] 钟祥烽, 李好义, 陈宏波, 等. 内锥面喷头熔体静电纺丝工艺参数对纤维直径的影响[J]. 塑料, 2014,43(3):89-93.
ZHONG Xiangfeng, LI Haoyi, CHEN Hongbo, et al. Influence of process parameters on fiber diameter in melt electrospinning with inner cone nozzle[J]. PLASTICS, 2014,43(3):89-93.
[25] KO F K, GOGOTSI Y, ALI A A, et al. Electrospinning of continuous carbon nanotube filled nanofiber yarns[J]. Advanced Materials, 2003,15(14):1161-1165.
[26] 谭耀红, 刘呈坤, 毛雪. 静电纺制备定向纳米纤维集合体的研究现状[J]. 高分子材料科学与工程, 2018,34(11):183-190.
TAN Yaohong, LIU Chengkun, MAO Xue. Research status of electrospun directional nanofibers aggre-gates[J]. Polymer Materials Science & Engineering, 2018,34(11):183-190.
[27] ZHOU F, GONG R. Manufacturing technologies of polymeric nanofibres and nanofibre yarns[J]. Polymer International, 2010,57(6):837-845.
[28] 肖婉红, 曾泳春. 静电纺丝工艺参数对纤维直径影响的研究:实验及数值模拟[J]. 东华大学学报(自然科学版), 2009,35(6):632-638.
XIAO Wanhong, ZENG Yongchun. Effects of parameters on fiber diameter in electrospinning: experimental and numerical simulation[J]. Journal of Donghua Univer-sity(Natural Sciences Edition), 2009,35(6):632-638.
[29] WANG Xiaona, XU Yang, WEI Qufu, et al. Study on technological parameters effecting on fiber diameter of melt electrospinning[J]. Advanced Materials Research, 2011,332-334:1550-1556.
[30] 吴韶华, 张彩丹, 覃小红, 等. 静电纺取向纳米纤维束及纳米纤维纱线的研究进展[J]. 高分子材料科学与工程, 2014,30(6):182-186.
WU Shaohua, ZHANG Caidan, QIN Xiaohong, et al. Advances in electrospinning oriented nanofibre bundles and nanofibre yarns[J]. Polymer Materials Science & Engineering, 2014,30(6):182-186.
[31] SMIT E, BÜTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers[J]. Polymer, 2005,46(8):2419-2423.
[32] ABBASIPOUR M, KHAJAVI R, ABBASIPOUR M. Nanofiber bundles and yarns production by electrospinning: a review[J]. Advances in Polymer Technology, 2014,32(3):1158-1168.
[33] JALILI R, MORSHED M, RAVANDI S A H . Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers[J]. Journal of Applied Polymer Science, 2010,101(6):4350-4357.
doi: 10.1002/(ISSN)1097-4628
[34] 董振峰, 朱志国, 王锐, 等. 碳纳米管/聚合物复合体系阻燃性能的研究进展[J]. 纺织学报, 2009,30(3):136-142.
DONG Zhenfeng, ZHU Zhiguo, WANG Rui, et al. Recent development on flame retardancy of carbon nanotubes/polymer composites[J]. Journal of Textile Research, 2009,30(3):136-142.
[35] 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007,21(s1):77-82.
CAO Wei, SONG Xuemei, WANG Bo, et al. Research Progress in carbon nanotube[J]. Materials Review, 2007,21(s1):77-82.
[36] YAO Li, ALEKSANDER Gora, FRANKLIN Anariba, AVINASH Baji. Enhanced tensile strength and electrical conductivity of electrospun polyacrylonitrile yarns via post-treatment[J]. Polymer Composites, 2018.
doi: 10.1002/pc.20198 pmid: 25382894
[37] LAM H, TITCHENAL N, NAGUIB N, et al. Electrospinning of carbon nanotube reinforced nanocomposite fibrils and yarns[J]. MRS Proceedings, 2003,791:51-56.
[38] SUI X, WIESEL E, WAGNER H D. Mechanical properties of electrospun PMMA micro-yarns: Effects of NaCl mediation and yarn twist[J]. Polymer, 2012,53(22):5037-5044.
doi: 10.1016/j.polymer.2012.08.062
[39] LANGLEY D, GIUSTI G, MAYOUSSE C, et al. Flexible transparent conductive materials based on silver nanowire networks: a review[J]. Nanotechnology, 2013,24(45):20.
[40] LUO H, MA Y, LI W, et al. Shape memory-enhanced water sensing of conductive polymer composites[J]. Materials Letters, 2015,161:189-192.
[41] WAN C J, LIU Y H, FENG P, et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates[J]. Advanced Materials, 2016,28(28):5878-5886
doi: 10.1002/adma.201600820 pmid: 27159546
[42] 夏凯伦, 蹇木强, 张莹莹. 纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J]. 物理化学学报, 2016,32(10):2427-2446.
XIA Kailun, QIAN Muqiang, ZHANG Yingying. Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Physico-Chimica Sinica, 2016,32(10):2427-2446.
[43] ZHONG W, LIU C, XIANG C, et al. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating AgNW/POE nanofibrous composite yarn[J]. ACS Applied Materials & Interfaces, 2017,9(48):42058-42066.
pmid: 29115820
[44] 万振凯, 李鹏, 贾敏瑞, 等. 智能复合材料中碳纳米管纱线参数设计及其变化特征[J]. 纺织学报, 2018,39(6):58-63.
WAN Zhenkai, LI Peng, JIA Minrui, et al. Parameter design and variation characteristics of carbon nanotube yarns in intelligent composites[J]. Journal of Textile Research, 2018,39(6):58-63.
[45] KIM S H, HAINES C S, LI N, et al. Harvesting electrical energy from carbon nanotube yarn twist[J]. Science, 2017,357(6353):773.
doi: 10.1126/science.aam8771 pmid: 28839068
[46] YANG C, DENG G, CHEN W, et al. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering[J]. Colloids & Surfaces B: Biointerfaces, 2014,122:270-276.
doi: 10.1016/j.colsurfb.2014.06.061 pmid: 25064476
[47] LEE B S, KIM W S, KIM D H, et al. Fabrication of SnO2 nanotube microyarn and its gas sensing be-havior[J]. Smart Materials & Structures, 2011,20(10):105019.
[1] LI Hao, XING Mingjie, SUN Zhihao, WU Yao. Exploration of image-based testing method for yarn twist in air-jet vortex spinning [J]. Journal of Textile Research, 2021, 42(02): 60-64.
[2] LIU Haisang, JIANG Gaoming, DONG Zhijia. Simulation and virtual display for few-guide bar yarn dyed fabric based Web [J]. Journal of Textile Research, 2021, 42(02): 87-92.
[3] GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile / carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40.
[4] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[5] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[6] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[7] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[8] CHEN Meiyu, LIU Yulin, HU Geming, SUN Runjun. Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns [J]. Journal of Textile Research, 2021, 42(01): 59-66.
[9] CHEN Jieru, QIU Shiyuan, YANG Qingqing, ZHOU Yi. Research on inter-yarn friction of aramid fabric based on adjustable tension device [J]. Journal of Textile Research, 2021, 42(01): 67-72.
[10] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[11] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[12] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[13] ZHANG Wenchang, SHAN Zhongde, LU Ying. Fast location of yarn-bars on yarn-cage based on machine vision [J]. Journal of Textile Research, 2020, 41(12): 137-143.
[14] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[15] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!