Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 33-38.doi: 10.13475/j.fzxb.20181107206

• Fiber Materials • Previous Articles     Next Articles

Characterization on distribution of TiO2 particles in opaque polyester and dull nylon filaments

XING Dandan1, WANG Ni1(), LIU Huyi2, GAN Xuehui3, SHI Meiwu4   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Suzhou Longjie Special Fiber Co., Ltd.,Zhangjiagang, Jiangsu 215600, China
    3. College of Mechanical Engineering, Donghua University, Shanghai 201620,China
    4. Institute of Military Engineering, Academy of Military Sciences, Beijing 100082, China
  • Received:2018-11-29 Revised:2019-11-27 Online:2020-02-15 Published:2020-02-21
  • Contact: WANG Ni E-mail:wangni@dhu.edu.cn

Abstract:

In view of the current lack of corresponding characterization methods for the distribution of particles in functional fibers prepared by blending, a new refractive index method for making transparent fibers by preparing a solution with the same refractive index as the fiber was proposed. This new method was used to measure TiO2 distribution in opaque polyester fibers and dull polyamide fibers. In this research, scanning electron microscopy was used to characterize the distribution of the TiO2 particles in both the cross-sectional and the longitudinal surface of the fiber, while the three-dimensional imaging of nano-C technology was used for 3-D reconstruction of fibers. The results show that compared with the scanning electron microscopy that can only show the distribution of TiO2 in a small range, the refractive index method has certain feasibility in characterizing the distribution of blended particles in fibers. The results of nano-CT imaging after 3-D reconstruction can be used to count the blended particles and the particle size distributions. The experimental results of the three testing methods show that the agglomeration of inorganic particles in the fiber is more easily caused by master batch spinning than slicing spinning.

Key words: nano-CT technique, refractive index method, particle distribution, opaque polyester, dull nylon filament

CLC Number: 

  • TS176

Tab.1

Refractive index of mixed solution"

纤维 ɑ-溴代萘体积/mL 石蜡油体积/mL 混合溶液折射率
8.00 0 1.658
6.74 1.26 1.628
聚酯 5.47 2.53 1.598
4.21 3.79 1.568
2.95 5.05 1.538
1.68 6.32 1.508
5.30 2.70 1.594
4.21 3.79 1.568
聚酯酰6 3.12 4.88 1.542
2.00 6.00 1.515
0.88 7.12 1.489

Fig.1

SEM images of cross section and surface of opaque polyester and dull polyamide. (a)1# cross section(×5 000);(b)1# surface(×5 000);(c)2# cross section(×5 000);(d)2# surface(×5 000);(e)3# crosssection(×1 800);(f)3# surface(×1 500);(g)4# cross section(×1 800);(h)4# surface(×1 500)"

Fig.2

Tomography maps and reconstructed 3-D images of opaque polyester. (a)Tomography map of 1#;(b)Tomography map of 2#;(c)Reconstructed 3-D image of 1#;(d)Reconstructed 3-D image of 2#"

Fig.3

Tomography maps and reconstructed 3-D images dull of polyamide 6. (a)Tomography map of 3#;(b)Tomography map of 4#;(c)Reconstructed 3-D image of 3#;(d)Reconstructed 3-D image of 4#"

Fig.4

TiO2 particle size distribution in opaque polyester(a)and dull polyamide(b)fiber"

Fig.5

Light transmittance of opaque polyester fiber and dull polyamide in solutions"

Fig.6

Optical microscope images of opaque polyester fibers(×40). (a)1# in water;(b)1# in solution;(c)2# in water;(d)2# in solution"

Fig.7

Optical microscope images of dull polyamide 6(×20). (a)3# in water;(b)3# in solution;(c)4# in water;(d)4# in solution"

[1] 刘海明, 王锐, 张大省. PET/无机纳米粒子复合物的制备及性能[J]. 合成纤维工业, 2006,29(3):15-17.
LIU Haiming, WANG Rui, ZHANG Dasheng. Preparation and properties of PET/inorganic nano-particle composites[J]. China Synthetic Fiber Industry, 2006,29(3):15-17.
[2] 刘少轩, 洪友丽, 高云龙, 等. 纳米CT成像表征锦纶6 中TiO2颗粒分布状况[J]. 高等学校化学学报, 2013,34(2):269-271.
LIU Shaoxuan, HONG Youli, GAO Yunlong, et al. Characterization of the dispersion of TiO2 particles in fine denier polyamide 6 monofilament via nano-CT technique[J]. Chemical Journal of Chinese Universities, 2013,34(2):269-271.
[3] 姜兆辉, 金剑, 肖长发, 等. 成纤高聚物中无机粒子分散性表征方法及理论研究[J]. 纺织学报, 2015,36(6):155-161.
JIANG Zhaohui, JIN Jian, XIAO Changfa, et al. Study on characterization methods and theories of inorganic particles dispersion in fiber-forming polymers[J]. Journal of Textile Research, 2015,36(6):155-161.
[4] WU D, GAO D, MAYO S C, et al. X-ray ultramicroscopy: a new method for observation and measurement of filler dispersion in thermoplastic composites[J]. Composites Science & Technology, 2008,68(1):178-185.
[5] 施楣梧, 张燕. 视觉遮蔽性能良好的合成纤维及其针织物[J]. 针织工业, 2010(10):6-8.
SHI Meiwu, ZHANG Yan. Study of the visual masking synthetic fiber and its knitted fabric[J]. Knitting Industries, 2010(10):6-8.
[6] JIANG Zhaohui, MA Pibo, GUO Zengge, et al. Effect of coupling agent on structure and properties of micro-nano composite fibers based on PET[J]. Journal of Applied Polymer Science, 2016,133(34):43846-43853.
[7] TSCHESCHEL A, LACAYO J, STOYAN D. Statistical characterization of TEM images of silica-filled rubber[J]. Journal of Microscopy, 2005,217(1):75-82.
[8] KRUMBHOLZ N, HOCHREIN T, VIEWEG N, et al. Degree of dispersion of polymeric compounds determined with terahertz time-domain spectroscopy[J]. Polymer Engineering & Science, 2011,51(1):109-116.
[9] 何伟. 无机粒子填充聚合物复合材料熔融态超声测量与表征[D]. 广州:华南理工大学, 2013: 15-20.
HE Wei. Ultrasonic measurement and characterization of molten polymer composite[D]. Guangzhou:South China University of Technology, 2013: 15-20.
[10] 于伟东. 纺织物理[M]. 上海:东华大学出版社, 2009: 3-15.
YU Weidong. Textile physics[M]. Shanghai:Donghua University Press, 2009: 3-15.
[11] YEN K C. The arrangement of fibres in fibro yarns[J]. Journal of the Textile Institute Transactions, 1952,43(2):60-66.
[12] GUO Ying, TAO Xiaoming, XU Bugao, et al. Structural characteristics of low torque and ring spun yarns[J]. Textile Research Journal, 2011,81(8):778-790.
[13] 王妮, 曹秀明, 胡京平, 等. 防透明纤维的开发及其在毛纺上的应用[J]. 毛纺科技, 2013,41(1):1-6.
WANG Ni, CAO Xiuming, HU Jingping, et al. Development of opaque fibers and its application in wool fabrics[J]. Wool Textile Journal, 2013,41(1):1-6.
[14] 张丽霞, 齐鲁. 纳米粒子在聚合物中的分散研究进展[J]. 合成纤维, 2008,37(8):11-14.
ZHANG Lixia, QI Lu. The research progress on the dispersion of nano particles in the polymer[J]. Synthetic Fiber in China, 2008,37(8):11-14.
[15] 姚穆. 纺织材料学[M].4版. 北京:中国纺织出版社, 2015: 2-30.
YAO Mu. Textile materials[M]. 4th edition. Beijing:China Textile & Apparel Press, 2015: 2-30.
[16] 梁知挺. 角度受限下纳米CT图像处理及三维重构算法研究[D]. 合肥:中国科学技术大学, 2016: 15-20.
LIANG Zhiting. Study on the image processing and 3d reconstruction algorithm for limited-angle nano-CT[D]. Hefei: University of Science and Technology of China, 2016: 15-20.
[1] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[2] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process [J]. Journal of Textile Research, 2020, 41(10): 20-28.
[3] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[4] ZHOU Huilin, YANG Weimin, LI Haoyi. Research progress of filtering material for medical mask [J]. Journal of Textile Research, 2020, 41(08): 158-165.
[5] WAN Yucai, LIU Ying, WANG Xu, YI Zhibing, LIU Ke, WANG Dong. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber/polypropylene microfiber scaffold: a composite air filter with high filtration performance [J]. Journal of Textile Research, 2020, 41(04): 15-20.
[6] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[7] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[8] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[9] ZHOU Ying, WANG Chuang, ZHU Jiaying, HUANG Linxi, YANG Lili, YU Houyong, YAO Juming, JIN Wanhui. Preparation of controllable ZnO nanoparticles on surface of nonwovens [J]. Journal of Textile Research, 2019, 40(09): 35-41.
[10] ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, ZHAO Baobao, DUO Yongchao. Effect of oil removal on charging performance of needle-punched nonwoven filters [J]. Journal of Textile Research, 2019, 40(06): 79-84.
[11] CHEN Jingjing, WANG Biqi, WANG Xueqin. Innovation design and performance test of needle composite wool fabric [J]. Journal of Textile Research, 2019, 40(03): 49-53.
[12] CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan. Research progress of flexible lithium battery electrodes based on carbon fibers and their fabrics [J]. Journal of Textile Research, 2019, 40(02): 173-180.
[13] . Stucture and performance of high temperature resistant fibrous filters with gradient structure [J]. Journal of Textile Research, 2016, 37(05): 17-22.
[14] . Research and characterization of water and oil repellent finishing auto interior materials [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(11): 118-0.
[15] . Forming and performance of PP spun-bonded/needling formwork liner [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 67-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!