Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (05): 184-190.doi: 10.13475/j.fzxb.20190505607

• Comprehensive Review • Previous Articles     Next Articles

Research progress in impact-energy-absorbing cushioning garments

WANG Yaxian, LI Yanmei()   

  1. College of Textile and Garment, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2019-05-24 Revised:2020-02-15 Online:2020-05-15 Published:2020-06-02
  • Contact: LI Yanmei E-mail:lym0350@126.com

Abstract:

In order to establish understanding for the protection, wear comfort of impact-energy-absorbing cushioning garments under low-speed impact, this paper reports on the research outcomes of two types of protection methods, i.e. triggered protection and non-triggered protection, used for impact-energy-absorbing cushioning garments both in China and abroad. It reviews the three test methods and related standards of the protective performance test of the garments in the non-dressing and dressing states, and then discusses the advantages and disadvantages of these methods. The results show that the triggered and non-triggered protection of impact-energy-absorbing cushioning garments involves multidisciplinary collaborations of many fields such as electrics, medicine, clothing, and so on. As for the cushioning materials, they should meet the wearability requirement while satisfying the basic protective performance. In terms of protection performance evaluation, numerical simulation is shown to be able to avoid uncontrollable risks, and simulation models should fully consider the "human-clothing" interaction. The review concludes that test standards should be developed for unification and universality.

Key words: low speed impact, protective garments, energy absorption buffer, bone injury, protective performance

CLC Number: 

  • TS941.73

Tab.1

Clothing for application of soft energy-absorbing protective materials"

服装名称 吸能材料选择 防护结构原理 结合方式 年份 研发阶段
丹麦SafeHip?[13] 经编、纬编间隔
织物组合
三维织物,主要依靠间隔丝的压缩变形
将动能转化为自身势能
市场化
BAZUS滑雪服 D3O凝胶 D3O受外力瞬时变硬,
分散并吸收能量
插片式,可拆卸 2009 市售
新型裤子、外套[14,15] 弹性材质如气囊 密闭气体压缩吸收能量 可拆卸 2014、2016 专利
防护运动服[16] 针织纬编间隔织物 间隔丝的变形压缩吸收能量 一体化 2015 实验室研究
防护型功能服[17] D3O凝胶、
DEFLEXION材料、
有机硅经编间隔织物
D3O、DEFLEXION材料为非牛顿流体,
受外力瞬时变硬,分散并吸收能量;
有机硅经编间隔织物利用间隔纱胶硅胶
的可压缩性吸收外力
衍缝,不可拆卸 2016 专利
骑马运动碰撞
防护裤[18]
聚氨酯材料 聚氨酯压缩吸收能量 双层夹缓冲材料,
不可拆卸
2016 实验室研究

Tab.2

Material parameters in the model of pelvic-soft tissue-sponge material"

材料种类 密度/(g·cm-3) 弹性模量/MPa 泊松比
皮质骨 1.40 7 300 0.300
松质骨 1.10 200 0.300
软组织 0.75 Hyperelastic 0.495
海绵泡沫 0.05 Hyperfoam 0.000
[1] 刘艳, 刘文文, 王莲莲. 老年人跌倒的危险因素及护理干预[J]. 现代医药卫生, 2015(5):688-690.
LIU Yan, LIU Wenwen, WANG Lianlian. Risk factors for falls in the elderly and nursing interventions[J]. J Mod Med Health, 2015(5):688-690.
[2] SHI G, CHAN C S, LI W J, et al. Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier[J]. IEEE Sensors Journal, 2009,9(5):495-503.
[3] TAMURA T, YOSHIMURA T, SEKINE M, et al. A wearable airbag to prevent fall injuries[J]. IEEE Transactions on Information Technology in Biomedicine, 2009,13(6):910-914.
pmid: 19846379
[4] 李慧奇, 宁运琨, 杨俊飞, 等. 穿戴式跌倒防护安全气囊研究[J]. 集成技术, 2018,7(2):69-77.
LI Huiqi, NING Yunkun, YANG Junfei, et al. The research of wearable fall protective airbag[J]. Journal of Integration Technology, 2018,7(2):69-77.
[5] Active Protective Company. Keep yourself up to data: our most recent news [EB/OL]. [2017-2-24]. https://activeprotective.com/.
[6] 王国杰. 基于惯性传感器的跌倒防护气囊系统的研究[D]. 武汉:武汉理工大学, 2014: 49-52.
WANG Guojie. An airbag system for fall protection based on inertial sensors[D]. Wuhan: Wuhan University of Technology, 2014: 49-52.
[7] 王中珍, 丁帅, 王蝶. 耐冲击运动防护服的研究进展及设计要素[J]. 山东纺织科技, 2013,54(1):43-47.
WANG Zhongzhen, DING Shuai, WANG Die. Design considerations impact resistant sport protective products[J]. Shandong Textile Science & Technology, 2013,54(1):43-47.
[8] MOELLER B F. Biomechanical impact of lower-body PPE on the football athlete: an evaluation and redesign of the knee pad[D]. Ames: Graduate Theses and Dissertations Iowa State University Capstones, 2013: 5.
[9] 齐元元. 轻薄型无缝针织物抗冲击性能研究与防护服开发[D]. 杭州:浙江理工大学, 2017: 7-11.
QI Yuanyuan. Research on impact resistance of light and thin seamless knitted fabric and development of protective clothing [D]. Hangzhou:Zhejiang Sci-Tech University, 2017: 7-11.
[10] 郭晓芳, 龙海如. 经编间隔织物的冲击性能[J]. 纺织学报, 2013,34(4):45-52.
GUO Xiaofang, LONG Hairu. Impact properties of warp knitted spacer fabrics[J]. Journal of Textile Research, 2013,34(4):45-52.
[11] 徐婉丽, 常玉萍, 马丕波. 负泊松比经编间隔织物的抗低速冲击性能[J]. 纺织学报, 2018,39(11):50-54.
XU Wanli, CHANG Yuping, MA Pibo. Low velocity impact resistance of warp-knitted spacer fabrics of negative Poisson's ratio[J]. Journal of Textile Research, 2018,39(11):50-54.
[12] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019,40(6):158-164.
CHEN Xiaogang. Trend of research in textile-based protective materials against ballistic and stabbing[J]. Journal of Textile Research, 2019,40(6):158-164.
[13] 赵彤. 基于纬编间隔织物的头盔缓冲衬垫材料制备与性能研究[D]. 上海:东华大学, 2017: 4.
ZHAO Tong. Study on cushioning properties of weft-knitted spacer fabrics for helmet padding[D]. Shanghai: Donghua University, 2017: 4.
[14] 天津春花秋月科技发展有限公司. 一种具有护膝功能的裤子:201410366919.2[P]. 2014-12-03.
Tianjin Chunhua Qiuyue technology development Co. LTD. The utility model relates to a pair of trousers which have the function of knee protection: 201410366919.2[P]. 2014-12-03.
[15] 刘诗军 一种新型防摔服装: 201620418493.5[P]. 2016-11-16.
LIU Shijun. A new anti-fall clothing: 201620418493.5[P]. 2016-11-16.
[16] 何玲. 抗冲击无缝针织物性能研究与防护运动服开发[D]. 杭州:浙江理工大学, 2015: 9-10.
HE Ling. Research on performance of seamless knitted fabrics and development of protective sportswear of based on the impact resistance[J]. Hangzhou: Zhejiang Sci-Tech University, 2015: 9-10.
[17] 訚珺 老年人跌倒防护型功能服装: 201521125483.4[P]. 2016-06-15.
YAN Jun. Fall protective functional clothing for the elderly: 201521125483.4[P]. 2016-06-15.
[18] 阮兰. 运动防护服装复合材料的碰撞防护性能研究[D]. 上海:上海工程技术大学, 2016: 44-48.
RUAN Lan. Research on impact protection performance of composite clothing materials[D]. Shanghai: Shanghai University of Engineering Science, 2016: 44-48.
[19] 陆振乾, 景晓颖. 硅橡胶填充经编间隔织物的抗冲击性能[J]. 纺织学报, 2014,35(9):51-55.
LU Zhenqian, JING Xiaoying. Study on the impact property of silicone rubber filled warp knitted spacer fabric[J]. Journal of Textile Research, 2014,35(9):51-55.
[20] RAJAN P, RAMAKRISHNAN G, KANDHAVADIVU P. Permeability and impact properties of warp-knitted spacer fabrics for protective application[J]. Journal of The Textile Institute, 2015,107(9):1079-1088.
[21] ERTEKIN G, MARMARALI A. Impact resistance behaviour of silicone coated warp knitted spacer fabrics used for protective clothing[J]. Journal of The Textile Institute, 2017(108):1-9.
[22] WIAH W, OLGA T. Force attenuation capacity and thermophysiological wear comfort of vertically lapped nonwoven fabric[J]. Journal of The Textile Institute, 2018,109(8):1035-1043.
[23] NABHANI F, BAMFORD J. Mechanical testing of hip protectors[J]. Journal of Materials Processing Technology, 2002,124(3):311-318.
[24] 上海工程技术大学. 一种运动防护护膝: 201220699854.X [P]. 2013-10-09.
Shanghai University of Engineering Science. A sports protective knee pad: 201220699854.X [P]. 2013-10-09.
[25] LEE T, HWANG D G, OGIHARA N, et al. The use of shear thickening polymer as a hip protecter[C]// Annual international conference of the IEEE engineering in medicine and biology society. Jejudo: IEEE, 2017: 1633-1635.
[26] SCHOOR N M V, VEEN A J V D, SCHAAP L A, et al. Biomechanical comparison of hard and soft hip protectors, and the influence of soft tissue[J]. Bone (New York), 2006,39(2):401-407.
[27] 李宁, 姜亚明, 吴宇珂. 膝盖防护用材料动态缓冲性能研究[J]. 针织工业, 2016(5):9-13.
LI Ning, JIANG Yaming, WU Yuke. Study of the dynamic buffering of knee protective material for the elderly[J]. Knitting Industries, 2016(5):9-13.
[28] TADANO S, NAKATSUCHI H, GOTO N, et al. Mechanical evaluation of hip pads to protect against fracture of elderly femurs in falls[J]. Bio-medical Materials and Engineering, 2011,21(4):235-246.
doi: 10.3233/BME-2011-0672 pmid: 22182791
[29] KANNUS P, PARKKARI J, POUTALA J. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study[J]. Bone, 1999,25(2):229-35.
pmid: 10456390
[30] LAING A C, FELDMAN F, JALILI M, et al. The effects of pad geometry and material properties on the biomechanical effectiveness of 26 commercially available hip protectors[J]. Journal of Biomechanics, 2011,44(15):2627-2635.
doi: 10.1016/j.jbiomech.2011.08.016 pmid: 21899845
[31] PARKKARI J, KANNUS P, HEIKKIL J, et al. Impact experiments of an external hip protector in young volunteers[J]. Calcified Tissue International, 1997,60(4):354-357.
pmid: 9075632
[32] WIENER S L, ANDERSSON G B J, NYHUS L M, et al. Force reduction by an external hip protector on the human hip after falls[J]. Clinical Orthopaedics and Related Research, 2002,398(398):157-168.
[33] CHOI W J, HOFFER J A, ROBINOVITCH S N. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls[J]. Clinical Biomechanics, 2010,25(1):63-69.
pmid: 19766363
[34] 李宁. 老年人膝部防护系统的研制[D]. 天津:天津工业大学, 2016: 46-53.
LI Ning. Development of knee protection system for the old[D]. Tianjin: Tiangong University, 2016: 46-53.
[35] 邢梦迪, 刘莉. 运动捕捉技术在运动服装研发中的应用[J]. 山东纺织科技, 2017,58(4):25-28.
XING Mengdi, LIU Li. The application of motion capture technology in developing sportswear[J]. Shandong Textile Science & Technology, 2017,58(4):25-28.
[36] 曹蕊超, 谢红. 基于三维运动捕捉系统的面料防护性能研究[J]. 针织工业, 2016(2):77-81.
CAO Ruichao, XIE Hong. Study on protective ability of fabric based on 3D dynamic capture system[J]. Knitting Industries, 2016(2):77-81.
[37] 刘青青, 阎玉秀. 基于三维运动捕捉的篮球护膝防护性能研究[J]. 现代纺织技术, 2019,27(2):53-58.
LIU Qingqing, YAN Yuxiu. Study on protective ability of basketball kneepads based on 3D dynamic capture system[J]. Advanced Textile Technology, 2019,27(2):53-58.
[38] 谢亮玉, 阎玉秀, 陶建伟, 等. 基于三维动态捕捉技术的无缝护膝防护性能研究[J]. 浙江理工大学学报(自然科学版), 2018,39(4):396-402.
XIE Liangyu, YAN Yuxiu, TAO Jianwei, et al. Research on the performance of seamless knee protection based on 3D dynamic capture technology[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2018,39(4):396-402.
[39] 李媛, 谢红, 邓红琼, 等. 运动护具对网球运动中上肢防护的影响[J]. 毛纺科技, 2018,46(6):71-77.
LI Yuan, XIE Hong, DENG Hongqiong, et al. Influence of sports gears on upper limb protection in tennis[J]. Wool Textile Journal, 2018,46(6):71-77.
[40] 吴旭波. 基于生物力学的防护性网球运动服装的研究[D]. 上海:上海工程技术大学, 2014: 21-26.
WU Xubo. Study on protective tennis sportswear based on biomechanical[D]. Shanghai: Shanghai University of Engineering Science, 2014: 21-26.
[41] 高哲, 蒋高明. 多轴向经编曲面复合材料汽车门低速碰撞数值模拟[J]. 纺织学报, 2018,39(2):43-48.
GAO Zhe, JIANG Gaoming. Finite element analysis of curved multi-axial warp-knitted composite car door under low-velocity impact[J]. Journal of Textile Research, 2018,39(2):43-48.
doi: 10.1177/004051756903900108
[42] MAUREL N, DIOP A, GRIMBERG J. A 3D finite element model of an implanted scapula: importance of a multiparametric validation using experimental data[J]. Journal of Biomechanics, 2005,38(9):1865.
doi: 10.1016/j.jbiomech.2004.08.019 pmid: 16023474
[43] 叶铭, 张绍祥, 王成焘. 力学虚拟人骨组织曲线曲面模型重建技术[J]. 医用生物力学, 2006,21(3):212-216.
YE Ming, ZHANG Shaoxiang, WANG Chengtao. Geometrical modeling of bone structure curve and surface for MVHC project[J]. Journal of Medical Biomechanics, 2006,21(3):212-216.
[44] 王冬梅, 董谢平, 张琳琳. 侧向冲击载荷作用下股骨-骨盆复合体的生物力学响应[J]. 医用生物力学, 2011,26(6):502-507.
WANG Dongmei, DONG Xieping, ZHANG Linlin. Biomechanical response of the pelvic impacts during sideways pelvis femur complex under lateral falls[J]. Journal of Medical Biomechanics, 2011,26(6):502-507.
[45] 孙培栋. 侧方跌倒高度及髋保护器对髋部冲击影响的实验及有限元分析[D]. 广州:南方医科大学, 2012: 87-94.
SUN Peidong. Influence of sideway falling height and hip protector on hip impact: an experimental and finite element study[D]. Guangzhou: Southern Medical University, 2012: 87-94.
[46] ROBINOVITCH S N, EVANS S L, MINNS J, et al. Hip protectors: recommendations for biomechanical testing: an international consensus statement: part I[J]. Osteoporosis International, 2009,20(12):1977-1988.
pmid: 19806286
[47] CAMERON I D, ROBINOVITCH S, BIRGE S, et al. Hip protectors: recommendations for conducting clinical trials-an international consensus statement: part II[J]. Osteoporosis International, 2010,21(1):1-10.
pmid: 19806284
[1] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[2] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[3] ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[4] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[5] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[6] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[7] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[8] CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146.
[9] LIU Qixia, ZHOU Yiru, YANG Zhilian, WANG Mei, JI Tao. Preparation and properties of spherical activated carbon-based composite fabric for permeable chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 182-188.
[10] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[11] . Application of shape memory material in functional and protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 170-174.
[12] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[13] . Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 151-156.
[14] . Influence of waterproof permeable layer on thermal and moisture protective performance of firefighter protective clothing in fire disaster [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 152-158.
[15] . Effects of light and moisture on performance of fabrics for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!