Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 22-26.doi: 10.13475/j.fzxb.20190604305

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials

ZHANG Lingyun, QIAN Xiaoming(), ZOU Chi, ZOU Zhiwei   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-06-18 Revised:2020-05-14 Online:2020-08-15 Published:2020-08-21
  • Contact: QIAN Xiaoming E-mail:qxm@tiangong.edu.cn

Abstract:

Aiming to develop a composite thermal insulation nonwovens with better comprehensive properties, the polyester-polyethylene fiber with a bicomponent skin/core structure was used as the main composite, the SiO2 aerogel powder was adhesioned on composite fiber surface by natural sedimentation method, the composite nonwoven materials with SiO2 aerogel/polyester-polyethylene fiber were made by hot-blast nonwoven production line. The content of SiO2 aerogel powder, microstructure, thermal insulation, elastic energy of compression, tensile property and permeability of the composite were studied. Results show that the SiO2 aerogel powder and polyester-polyethylene fiber web can be effectively combined, the addition of SiO2 aerogel powder has a certain supporting effect to polyester-polyethylene fiber, which can enhance the compressive elastic energy and tensile properties of the nonwoven composites. Meanwhile, due to the increase of still air between fibers, the thermal insulation performance of the composites is also improved.

Key words: SiO2 aerogel, polyester-polyethylene bicomponent fiber, hot-blast technology, nonwoven material, composite thermal insulation material

CLC Number: 

  • TS176

Fig.1

Production process flow"

Tab.1

Setting of sample parameter"

试样
编号
纤维线密
度/tex
纤维网厚
度/mm
纤维网面密度/
(g·m-2)
SiO2粉末质
量分数/%
1# 0.3 5.45 61.3 0
2# 0.3 5.79 62.1 5
3# 0.3 5.42 59.6 10
4# 0.3 5.97 62.4 15
5# 0.3 5.81 60.5 20
6# 0.1 3.77 60.2 0
7# 0.1 3.79 59.3 5
8# 0.1 3.58 60.4 10
9# 0.1 3.07 58.2 15
10# 0.1 3.28 59.8 20

Tab.2

SiO2 powder mass fraction on composite thermal insulation material"

试样
编号
纤维网质量/g SiO2气凝胶
质量分数/%
热风处理前 热风处理后
1# 3.83 3.83 0.0
2# 3.88 3.96 2.0
3# 3.72 3.87 4.0
4# 3.90 4.14 6.2
5# 3.78 4.09 8.2
6# 3.76 3.76 0.0
7# 3.71 3.78 2.0
8# 3.77 3.93 4.2
9# 3.64 3.88 6.6
10# 3.74 4.06 8.5

Fig.2

Surface microstructure of SiO2 aerogel/PET-PE fiber composite thermal insulation materials"

Fig.3

Variation curve of SiO2 aerogel powder mass fraction and crow value"

Fig.4

Variation curve of SiO2 aerogel powder mass fraction and compression resilience"

Fig.5

Variation curve of SiO2 aerogel powder mass fraction and fracture strength"

Fig.6

Variation curve of SiO2 aerogel powder mass fraction and permeability"

[1] 伍泓宇, 沈兰萍, 赵钰. 多组分保暖絮片的开发与性能研究[J]. 合成纤维, 2017,46(5):40-44.
WU Hongyu, SHEN Lanping, ZHAO Yu. Development and performance of multi-component thermal flocs[J]. Synthetic Fiber in China, 2017,46(5):40-44.
[2] 沈军, 王珏, 甘礼华, 等. 溶胶-凝胶法制备SiO2气凝胶及其特性研究[J]. 无机材料学报, 1995(1):69-75.
SHEN Jun, WANG Jue, GAN Lihua, et al. Preparation of SiO2 aerogel by sol-gel method and its properties[J]. Journal of Inorganic Materials, 1995(1):69-75.
[3] RAO A V, HARANATH D. Effect of methyltrimethoxysilane as a synjournal component on the hydrophobicity and some physical properties of silica aerogels[J]. Microporous & Mesoporous Materials, 1999,30(2/3):267-273.
[4] 王璐, 丁笑君, 夏馨, 等. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019,40(10):79-84.
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric[J]. Journal of Textile Research, 2019,40(10):79-84.
[5] MAZRAEH-SHAHI Z T, SHOUSHTARI A M, BAHRAMIAN A R, et al. Synjournal, structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite[J]. Fibers and Polymers, 2014,15(10):2154-2159.
doi: 10.1007/s12221-014-2154-z
[6] VENKATARAMAN M, MISHRA R, ARUMUGAM V, et al. Acoustic properties of aerogel embedded nonwoven fabrics[C]// 6th International Conference on Nanomaterials. Liberec: Technical University of Liberec, 2014: 124-130.
[7] VENKATARAMAN M, MISHRA R, JASIKOVA D, et al. Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures[J]. Journal of Industrial Textiles, 2015,45(3):387-404.
doi: 10.1177/1528083714534711
[8] VENKATARAMAN M, MISHRA R, JAKUB W, et al. Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures[J]. Journal of The Textile Institute, 2015,106(7):736-747.
doi: 10.1080/00405000.2014.939808
[9] VENKATARAMAN M, MISHRA R, TOMONORI S, et al. Effect of compressibility on heat transport phenomena in aerogel-treated nonwoven fabrics[J]. Journal of The Textile Institute, 2016,107(9):1150-1158.
[10] VENKATARAMAN M, MISHRA R, SUBRAMANIAM V, et al. Dynamic heat flux measurement for advanced insulation materials[J]. Fibers and Polymers, 2016,17(6):925-931.
doi: 10.1007/s12221-016-5882-4
[11] VENKATARAMAN M, MISHRA R, MILITKY J, et al. Modelling and simulation of heat transfer by convection in aerogel treated nonwovens[J]. Journal of The Textile Institute, 2017,108(8):1442-1453.
[12] XIONG X, YANG T, MISHRA R, et al. Transport properties of aerogel-based nanofibrous nonwoven fabrics[J]. Fibers and Polymers, 2016,17(10):1709-1714.
[13] 王觅堂, 李梅, 柳召刚, 等. 超细粉体的团聚机理和表征及消除[J]. 中国粉体技术, 2008(3):46-51.
WANG Mitang, LI Mei, LIU Zhaogang, et al. Agglomeration mechanism, characterization and elimination of ultrafine powders[J]. China Powder Science and Technology, 2008(3):46-51.
[14] 纪守峰, 李桂春. 超细粉体团聚机理研究进展[J]. 中国矿业, 2006(8):54-56.
JI Shoufeng, LI Guichun. Research progress on agglomeration mechanism of ultrafine powders[J]. China Mining Magazine, 2006(8):54-56.
[1] AN Qi, FU Yijun, ZHANG Yu, ZHANG Wei, WANG Lu, LI Dawei. Research progress of nonwovens for medical protective garment [J]. Journal of Textile Research, 2020, 41(08): 188-196.
[2] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2 / MIL-88B(Fe) / polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
[3] WANG Lu, DING Xiaojun, XIA Xin, WANG Hong, ZHOU Xiaohong. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric [J]. Journal of Textile Research, 2019, 40(10): 79-84.
[4] ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, ZHAO Baobao, DUO Yongchao. Effect of oil removal on charging performance of needle-punched nonwoven filters [J]. Journal of Textile Research, 2019, 40(06): 79-84.
[5] . Preparation and properties of bicomponent spunbond-spunlance nonwoven materials with gradient structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 56-61.
[6] . Sound absorption properties of nonwoven material based on wool and its hybrid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 67-71.
[7] . Influence of corona electret treatment on melt-blow PLA nonwovens material [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 13-17.
[8] . Preparation of polyphenylene sulfide spunbonded nonwovens material and its filterability [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(10): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!