Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 20-28.doi: 10.13475/j.fzxb.20200204109

• Fiber Materials • Previous Articles     Next Articles

Filtrations of propylene-based micro-nano elastic filters via melt blowing process

SUN Huanwei1, ZHANG Heng1,2(), ZHEN Qi3, ZHU Feichao4, QIAN Xiaoming5, CUI Jingqiang2,6, ZHANG Yifeng1   

  1. 1. School of Textile, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Henan Key Laboratory of Medical Polymer Materials Technology and Application, Xinxiang, Henan 453400, China
    3. School of Clothing, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    4. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    5. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    6. Henan Tuoren Medical Device Co., Ltd., Xinxiang, Henan 453400, China
  • Received:2020-02-20 Revised:2020-05-02 Online:2020-10-15 Published:2020-10-27
  • Contact: ZHANG Heng E-mail:zhangheng2699@zut.edu.cn

Abstract:

In order to enhance the elasticity of polypropylene (PP) melt blown nonwovens to solve brittleness and poor tensile strength when used as filters, samples of PBE/PP micro-nano fibrous materials reinforced with propylene-based elastomer (PBE) were prepared through the blending melt blowing process. The thermal properties and rheological properties of the PBE/PP blends were tested and the effects of PBE mass ratio and melt blowing process parameters on elasticity and filtration properties of the samples were studied. The results show that the melting peak of the blends decreases from 173.6 ℃ to 165.1 ℃ and the crystallinity gradually decreases from 39.0% to 9.8% as the PBE mass ratio is increased to 85%. Scanning electron microscope (SEM) images show that the fiber diameter (df) distribution indicates binary feature in the range of 0.4-16 μm. The fine fibers are interspersed with the coarse ones to form a three-dimensional tortuous "embed" network. As the mass fraction of PBE increases to 85%, the proportion of the fine fibers with df of less than 2 μm increases to 68.3%, and the elastic recovery rate of the samples in the machine direction and cross direction increases to 81.8% and 79.1%, respectively. The filtration efficiency increases by about 1.8 times, and the hydrostatic pressure resistance increases to 4 699.6 Pa.

Key words: nonwoven, melt blown, propylene-based elastomer (PBE), filtration performance, hydrostatic pressure resistance, micro-nano fiber

CLC Number: 

  • TS176

Tab.1

Process of PBE/PP melt blowing nonwovens"

设备 特征参数 温度设定/℃
螺杆
挤出机
直径为25 mm,
长径比为28∶1
一区 160
二区 215
三区 245
四区 245, 255, 265, 275, 285
五区 245, 255, 265, 275, 285
计量泵 规格为3 mL/r,
转速为5 r/min
245, 255, 265, 275, 285
熔喷模头 喷丝孔径为0.35 mm,
长径比为12∶1
245, 255, 265, 275,285
罗茨风机 风量为3.3 m3/min,
风压为45 kPa
260
其他 接收距离为9, 12, 18, 24和32 cm

Fig.1

DSC curves of PBE/PP blends. (a)Melting curve; (b)Cooling curve"

Tab.2

DSC data of polymers"

编号 m(PBE)∶m(PP) Tm/℃ ΔHm/(J·g-1) ΔHc/(J·g-1) Xc/%
1# 0∶100 173.6 81.5 -98.9 39.0
2# 25∶75 171.0 80.2 -91.2 38.4
3# 50∶50 167.9 70.8 -90.2 33.9
4# 75∶25 166.3 46.4 -53.9 22.2
5# 85∶15 165.1 20.5 -25.2 9.8

Fig.2

Rheological curves of polymers"

Fig.3

Surface SEM images of samples with different PBE mass ratio"

Fig.4

Fiber diameter distribution of samples with different PBE mass ratio"

Fig.5

Surface SEM images of samples with different melt temperature"

Fig.6

Cross section SEM images of samples with different die to collector distance"

Fig.7

Elastic recovery curves of samples"

Tab.3

Tensile elasticity data of samples%"

编号 方向 塑性
变形率
弹性
回复率
急弹性
变形率
缓弹性
变形率
5# 18.22 81.78 61.85 19.93
20.86 79.14 51.98 27.16
4# 27.46 72.54 51.45 21.09
27.56 72.44 44.22 28.22
3# 29.63 70.37 44.44 25.93
32.10 67.9 38.77 29.13
2# 35.00 65.00 36.25 28.75
35.80 64.20 34.57 29.63

Fig.8

Filtration performance of samples. (a) PBE mass ratio; (b) Melt temperature; (c) Mass per unit area; (d) Die to collector distance"

Fig.9

Hydrostatic pressure resistance of samples"

[1] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020,41(3):168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020,41(3):168-174.
[2] DENG Nanping, HE Hongsheng, YAN Jing, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019,165:174-179.
doi: 10.1016/j.polymer.2019.01.035
[3] ZHANG Heng, ZHEN Qi, LIU Yong, et al. One-step melt blowing process for pp/peg micro-nanofiber filters with branch networks[J]. Results in Physics, 2019,12:1421-1428.
doi: 10.1016/j.rinp.2019.01.012
[4] ZHU Feichao, SU Juanjuan, ZHAO Yonghuan, et al. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly (lactic acid)[J]. Textile Research Journal, 2019,89(19/20):4173-4185.
doi: 10.1177/0040517519826926
[5] 桂继杨, 陈钢进, 肖春平, 等. 基于熔喷过程的等规聚丙烯中拟六方与α混合晶的构成及其稳定性[J]. 材料科学与工程学报, 2017,35(1):32-36,72.
GUI Jiyang, CHEN Gangjin, XIAO Chunpin, et al. Constitution and stability of mixture of mesomorphic and α crystal in isotactic polypropylene by melt-blown process[J]. Journal of Materials Science and Engineering, 2017,35(1):32-36,72.
[6] HE Xiaozhen, RYTÖLUOTO Ilkka, ANYSZKA Rafal, et al. Surface modification of fumed silica by plasma polymerization of acetylene for pp/poe blends dielectric nanocomposites[J]. Polymers, 2019,11(12):1957.
doi: 10.3390/polym11121957
[7] 刘妙峥, 吴海波. 聚四氟乙烯/聚丙烯杂化熔喷滤料结构与性能[J]. 东华大学学报(自然科学版), 2019,45(3):353-357.
LIU Miaozheng, WU Haibo. Structure and performance of polytetrafluoroethylene/polypropylene hybrid melt-blown filtration materials[J]. Journal of Donghua University (Natural Science), 2019,45(3):353-357.
[8] PENG Mengna, JIA H, JIANG L, et al. Study on structure and property of PP/TPU melt-blown nonwovens[J]. The Journal of the Textile Institute, 2018,110(3):468-475.
doi: 10.1080/00405000.2018.1485461
[9] YANG Byungjin, LIM Kisub. Properties of vistamaxx/polypropylene side-by-side bicomponent melt-blown nonwoven improved water repellent and vapor permeability[J]. Textile Science and Engineering, 2016,53(1):128-133.
doi: 10.12772/TSE.2016.53.128
[10] LI Hui, HUANG Hui, MENG Xiaohui, et al. Fabrication of helical microfibers from melt blown polymer blends[J]. Journal of Polymer Science Part B: Polymer Physics, 2018,56(13):970-977.
doi: 10.1002/polb.v56.13
[11] 付小栓. 熔喷用共混弹性聚合物切片性能分析[J]. 产业用纺织品, 2018(5):31-35.
FU Xiaoshuan. Performance analysis of blended elastomer polymer chips for melt-blown process[J]. Technical Textiles, 2018(5):31-35.
[12] ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. RSC Advances, 2018,8(15):7932-41.
doi: 10.1039/C7RA10916D
[13] THOMAS T A, ANDY C C, GERT J C, et al. Propylene based meltblown nonwoven layers and composite structures: US 20080199673A1[P]. 2008-08-21.
[14] TAKESHI Miyamura, HIDEYUKI Kobayashi, TETSUYA Masugi. Stretchable nonwoven fabric: JP4845587B2[J]. 2011-11-28.
[15] KIM Doyoung, KIM Gihong, LEE Dongyun, et al. Effects of compatibility on foaming behavior of polypropylene/polyolefin elastomer blends prepared using a chemical blowing agent[J]. Journal of Applied Polymer Science, 2017. DOI: 10.1002/app.45201.
doi: 10.1002/app.40297 pmid: 25382868
[16] AHMADI Amirhossein, FREIRE Juan J. Molecular dynamics simulation of miscibility in several polymer blends[J]. Polymer, 2009,50(20):4973-4978.
doi: 10.1016/j.polymer.2009.08.010
[17] 黄溢美. SEBS/PP共混物的相容性与可纺性研究及其熔喷非织造布的制备[D]. 杭州:浙江理工大学, 2015: 12-14.
HUANG Yimei. The study of the compatibility and spinnability of sebs/pp composites and the preparation of sebs/pp melt blown nonwoven[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 12-14.
[18] PENG Hui, LU Min, LV Fucheng, et al. Understanding the effect of silane crosslinking reaction on the properties of PP/POE blends[J]. Polymer Bulletin, 2019,76:6413-6428.
doi: 10.1007/s00289-019-02724-z
[19] 张恒, 甄琪, 刘雍, 等. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019,40(9):28-34.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure[J]. Journal of Textile Research, 2019,40(9):28-34.
[20] 胡胜, 侯一凡, 王雄, 等. 橡胶与弹性体增韧改性聚丙烯的研究进展[J]. 合成树脂及塑料, 2019,36(5):104-109.
HU Sheng, HOU Yifan, WANG Xiong, et al. Research progress of rubber and elastomer toughening modified PP[J]. China Synthetic Resin and Plastics, 2019,36(5):104-109.
[21] 赵亚茹. 基于不锈钢混纺纱的弹性电磁屏蔽织物开发及性能研究[D]. 上海:东华大学, 2019: 30.
ZHAO Yaru. Development and properties of elastic electromagnetic shielding fabric based on stainless steel blended yarn[D]. Shanghai:Donghua University, 2019: 30.
[22] ZHANG Heng, ZHEN Qi, GUAN Xiaoyu. Fluffy Polypropylene-polyethylene glycol fabrics with branched micro- and nanofibrous structures for rapid liquid transport[J] Polymer Testing, 2019. DOI: 10.1016/j.polymertesting.2019.106310.
pmid: 23390325
[23] ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. RSC Advances, 2018,8(15):7932-7941.
doi: 10.1039/C7RA10916D
[24] ZHU Xiaoming, DAI Zijian, XU Kanli, et al. Fabrication of multifunctional filters via online incorporating nano-TiO2 into spun-bonded/melt-blown nonwovens for air filtration and toluene degradation[J]. Macromolecular Materials and Engineering, 2019. DOI: 10.1002/mame.201900350.
pmid: 22184499
[25] 王洁, 殷保璞, 靳向煜. SMS手术衣材料的“三拒一抗/单向导湿”双面泡沫整理[J]. 东华大学学报(自然科学版), 2014,40(4):476-480.
WANG Jie, YIN Baopu, JIN Xiangyu. Three repellent and antistatic/directional water-transfer" foam coating finishing for SMS surgical gown material on two sides[J]. Journal of Donghua University (Natural Science), 2014,40(4):476-480.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[3] CHEN Shiping, CHEN Min, WEI Cen, WANG Fujun, WANG Lu. Structure and functions of medical protective clothing and trend for research and development [J]. Journal of Textile Research, 2020, 41(08): 179-187.
[4] XIA Lei, CHENG Bowen, XI Peng, ZHUANG Xupin, ZHAO Yixia, LIU Ya, KANG Weimin, REN Yuanlin. Research progress of flash spinning nano / micro-fiber nonwoven technology [J]. Journal of Textile Research, 2020, 41(08): 166-171.
[5] AN Qi, FU Yijun, ZHANG Yu, ZHANG Wei, WANG Lu, LI Dawei. Research progress of nonwovens for medical protective garment [J]. Journal of Textile Research, 2020, 41(08): 188-196.
[6] ZHOU Huilin, YANG Weimin, LI Haoyi. Research progress of filtering material for medical mask [J]. Journal of Textile Research, 2020, 41(08): 158-165.
[7] LÜ Hanming, WANG Xiangyu, LIU Fengkun. Estimating water content of acetate fiber spunlaced nonwovens with dielectric spectroscopy [J]. Journal of Textile Research, 2020, 41(06): 55-60.
[8] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks [J]. Journal of Textile Research, 2020, 41(03): 168-174.
[9] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene / polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[10] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[11] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2 / MIL-88B(Fe) / polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
[12] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
[13] WANG Lu, DING Xiaojun, XIA Xin, WANG Hong, ZHOU Xiaohong. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric [J]. Journal of Textile Research, 2019, 40(10): 79-84.
[14] LIU Jian, MAO Jinlu, PENG Li, CAI Lingyun, ZHENG Xuming, ZHANG Fushan. Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics [J]. Journal of Textile Research, 2019, 40(09): 114-121.
[15] ZHOU Ying, WANG Chuang, ZHU Jiaying, HUANG Linxi, YANG Lili, YU Houyong, YAO Juming, JIN Wanhui. Preparation of controllable ZnO nanoparticles on surface of nonwovens [J]. Journal of Textile Research, 2019, 40(09): 35-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!