Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 53-58.doi: 10.13475/j.fzxb.20191200606

• Textile Engineering • Previous Articles     Next Articles

Study on stiffness style of knitted suit fabrics

LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University,Wuxi, Jiangsu 214122, China
  • Received:2019-12-02 Revised:2020-08-07 Online:2020-11-15 Published:2020-11-26
  • Contact: CONG Honglian E-mail:cong-wkrc@163.com

Abstract:

In order to discuss the requirements and standards for the development and application of knitted fabrics for suits, this study quantified the stiffness style of knitted fabrics in three aspects, i.e. bending length, wrinkle recovery and drape. With the help of experimental instruments and data processing, three performance indicators, bending stiffness, wrinkle recovery angle and static drape coefficient, were obtained. The woven suit fabric was used as a benchmark to study and analyze the stiffness style of knitted fabrics. The results show that knitted fabrics using the six-way-change Roman knit structure is more suitable for suits, and the structural stability of the six-way-change Roman knit structure is better than that of the twelve-way small jacquard structure and the variable interval structure, which reduces the difference between the course and wale flexural stiffness. The fabric thickness of the six-way-change Roman knit structure is 0.1 mm thicker, and the degree of crease recovery is 10% higher. When the fabric density is set to 110-130 loops/(5 cm), the degree of drape reaches more than 60% of that for the woven suit fabric. It is shown that the six-way-change Roman structure combined with high fabric density makes the stiffness style of knitted fabric reach 80% of that of the woven suit fabric.

Key words: knitted fabric, bending stiffness, wrinkle recovery angle, drape coefficient, stiffness style

CLC Number: 

  • TS186.2

Tab.1

Parameters of fabric samples"

分类 含量/% 织物
编号
经纬密/
(根·(5 cm)-1)
横纵密/
(线圈·(5 cm) -1)
面密度/
(g·m-2)
厚度/
mm
类别
经向 纬向 横密 纵密
毛型
面料
20(羊毛) 1 200 190 198 0.39 机织
2 130 130 209 0.63 针织6路变化罗马组织
3 125 130 199 0.52 针织6路变化罗马组织
4 105 100 200 0.53 针织12路小提花组织
20~40(羊毛) 5 210 175 180 0.41 机织
6 80 40 180 0.69 针织12路小提花组织
7 120 80 195 0.92 针织6路变化间隔组织
40~60(羊毛) 8 240 165 198 0.40 机织
9 120 80 182 0.65 针织6路变化间隔组织
10 115 75 177 0.65 针织8路变化间隔组织
棉型
面料
60(棉) 11 250 245 199 0.34 机织
12 120 150 195 0.72 针织6路变化罗马组织
13 115 160 185 0.63 针织2路棉毛组织
14 80 100 175 0.62 针织6路双面珠地
15 75 80 210 0.64 针织8路蜂巢组织

Fig.1

Principle of fabric bending test"

Fig.2

Histogram of fabric bending stiffness. (a) Bending stiffness of wool fabrics; (b) Bending stiffness of cotton fabrics; (c) Difference between weft bending stiffness and warp bending stiffness"

Fig.3

Proportion of fabric drape"

Fig.4

Comprehensive evaluation of knitted fabrics. (a) Wool knitted fabrics;(b) Cotton knitted fabrics"

[1] 顾莹莹. 有/无粘合覆衬西服面料的风格与性能[D]. 苏州:苏州大学, 2012: 1-4.
GU Yingying. The style and properties of the laminating/non-laminating covering suits' fabric[D]. Suzhou: Soochow University, 2012: 1-4.
[2] 肖学霞. 基于FAST仪力学性能测试的织物手感客观评价研究[D]. 苏州:苏州大学, 2005: 1-66.
XIAO Xuexia. Research of fabric handle objective evaluation based on the FAST mechanical performance testing[D]. Suzhou: Soochow University, 2005: 1-66.
[3] 吴坚, 赵玉萍, 周新刚. 亚麻/涤纶交织物的抗皱性能[J]. 纺织学报, 2006,27(10):89-91.
WU Jian, ZHAO Yuping, ZHOU Xingang. Wrinkle resistance of linen and polyester mixture[J]. Journal of Textile Research, 2006,27(10):89-91.
[4] 吕丽华, 吴坚, 叶方. 织物结构对折皱弹性和硬挺度的影响[J]. 纺织学报, 2004,25(5):99-101,153.
LÜ Lihua, WU Jian, YE Fang. Effect of fabric structure on crease elasticity and stiffness[J]. Journal of Textile Research, 2004,25(5):99-101, 153.
[5] 石风俊, 胡金莲. 织物的弯曲性能[J]. 纺织学报, 2005,26(3):15-18.
SHI Fengjun, HU Jinlian. The bending properties of fabrics[J]. Journal of Textile Research, 2005,26(3):15-18.
[6] 韩蓉, 胡堃, 吴戈, 等. 应用图像法的织物弯曲刚度计算[J]. 纺织学报, 2016,37(3):41-46.
HAN Rong, HU Yan, WU Ge, et al. Calculation on bending stiffness of woven fabrics by image processing method[J]. Journal of Textile Research, 2016,37(3):41-46.
[7] 何琦辉. 利用织物实际弯曲形态测试织物弯曲性能的方法研究[D]. 上海:东华大学, 2005: 9-12
HE Qihui. Research on testing method for bending property of textile using actual bending shape of fabric[D]. Shanghai: Donghua University, 2005: 9-12.
[8] 杜赵群, 于伟东. 纱线与织物风格的综合评价系统与表征方法研究:系统特征比较与基本参数确定[J]. 东华大学学报(自然科学版), 2006,32(3):115-119.
DU Zhaoqun, YU Weidong. Comprehensive evaluation system and characterization for the handle of fabric and yarn: the comparisons of systematic characteristics and the definition of basic parameters[J]. Journal of Donghua University (Natural Science), 2006,32(3):115-119.
[9] 倪红, 潘永惠. 基于BP神经网络的织物斜向弯曲性能的预测[J]. 纺织学报, 2009,30(2):48-51.
NI Hong, PAN Yonghui. Prediction of fabric diagonal bending rigidity by BP neural network[J]. Journal of Textile Research, 2009,30(2):48-51.
[10] 王革辉. KES与FAST系统测织物低应力力学性能的比较[J]. 纺织学报, 2002,23(6):30-31.
WANG Gehui. Comparison of low stress mechanical properties of fabrics measured by KES and FAST systems[J]. Journal of Textile Research, 2002,23(6):30-31.
[11] 吴巧英, 胡滢, 吴春胜, 等. 不同织物弯曲性能测试仪测试结果的比较[J]. 纺织学报, 2015,36(7):126-130.
WU Qiaoying, HU Ying, WU Chunsheng, et al. Comparative analysis on test results of different fabric bending behavior test[J]. Journal of Textile Research, 2015,36(7):126-130.
[12] 季慧, 蒋耀兴, 张长胜. 织物弯曲性能测试新方法[J]. 丝绸, 2017,54(3):33-37.
JI Hui, JIANG Yaoxing, ZHANG Changsheng. A new test method for fabric bending behavior[J]. Journal of Silk, 2017,54(3):33-37.
[13] 韩燕娜. 织物弯曲性与悬垂性测试新方法[J]. 丝绸, 2019,56(4):30-34.
HAN Yanna. A new testing method for fabric bending & draping behavior[J]. Journal of Silk, 2019,56(4):30-34.
[14] 黄三娇, 高卫东, 王鸿博. 精纺毛织物结构参数与折皱回复性的关系[J]. 纺织学报, 2016,37(11):37-41.
HUANG Sanjiao, GAO Weidong, WANG Hongbo. Relationship between structure parameters and wrinkle resistance of worsted fabric[J]. Journal of Textile Research, 2016,37(11):37-41.
[15] 张月, 王蕾, 刘建立, 等. 织物折皱回复角测试方法比较[J]. 纺织学报, 2015,36(1):60-63,71.
ZHANG Yue, WANG Lei, LIU Jianli, et al. Comparison of test methods for fabric wrinkle recovery angle[J]. Journal of Textile Research, 2015,36(1):60-63,71.
[16] 杨萍. 织物与纱线弯曲刚度的评价与研究[D]. 上海:东华大学, 2002: 23-29.
YANG Ping. Study on bending stiffness of yarns and fabrics[D]. Shanghai: Donghua University, 2002: 23-29.
[17] LIN H, STYLIOS G K. Prediction of post-buckling deformation in fabric drape[J]. Journal of The Textile Institute, 2009,100(1):35-43.
[18] 王春燕. 精纺毛织物悬垂性研究[J]. 毛纺科技, 2012,40(3):58-61.
WANG Chunyan. Research on the drapeability of worsted wool fabric[J]. Wool Textile Journal, 2012,40(3):58-61.
[19] 陈志蕾, 吴鲜鲜, 张红霞, 等. 基于系统聚类法的多组分混纺织物风格分析[J]. 纺织学报, 2012,33(9):50-54,60.
CHEN Zhilei, WU Xianxian, ZHANG Hongxia, et al. Analysis on style of multi-component blended fabrics based on clustering method[J]. Journal of Textile Research, 2012,33(9):50-54,60.
[20] 李虹, 史祥斌, 杨艳菲. 染整加工中织物结构变化对其弯曲性能的影响[J]. 纺织学报, 2010,31(10):92-97.
LI Hong, SHI Xiangbin, YANG Yanfei. Influences of fabric structure change on bending rigidity during dyeing and finishing[J]. Journal of Textile Research, 2010,31(10):92-97.
[21] 张晓婷. 织物折皱回复性能的研究[D]. 无锡:江南大学, 2008: 28-32.
ZHANG Xiaoting. Study on crease recovery of fabric[D]. Wuxi: Jiangnan University, 2008: 28-32.
[1] HU Xiaorui, SUN Fengxin, XIAO Caiqin, GAO Weidong. Characterization of wrinkle recovery of fabrics based on in-situ mechanical testing [J]. Journal of Textile Research, 2020, 41(10): 41-45.
[2] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
[3] SU Xuzhong, WEI Yanhong, LIU Xinjin, XIE Chunping. Effect of spinning method on wrinkle-resistance and tensile elasticity of fabric [J]. Journal of Textile Research, 2020, 41(04): 33-38.
[4] MO Shuai, FENG Zhanyong, DANG Heyu, ZOU Zhenxing, WANG Diwen, ZHU Hongwei. Vibration damping mechanism and vibration characteristics of spindle tubes [J]. Journal of Textile Research, 2020, 41(03): 148-153.
[5] LIANG Jialu, CONG Honglian, ZHANG Aijun. Technical design model of weft-knitted two-side jacquard fabric [J]. Journal of Textile Research, 2020, 41(01): 69-74.
[6] WANG Xiaoyan, DU Jinmei, PENG Lingqi, JING Lili, XU Changhai. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric [J]. Journal of Textile Research, 2020, 41(01): 80-87.
[7] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, ZHANG Zhongxi. Shape retention and wearing properties of polyester filament/cotton composite yarn twill fabrics [J]. Journal of Textile Research, 2019, 40(12): 39-44.
[8] WANG Qiuping, MAO Zhiping, ZHONG Yi, XU Hong, ZHANG Linping. Influence of knitted deformation on dyeing in flat pad dyeing [J]. Journal of Textile Research, 2019, 40(11): 94-99.
[9] YANG Enhui, QIU Hua, DAI Wenjie. Three-dimensional modeling and analysis of knitted fabric based on hexagonal mesh structure [J]. Journal of Textile Research, 2019, 40(11): 69-74.
[10] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
[11] LIN Jiameng, MIAO Xuhong, WAN Ailan. Influence of plasma pretreatment on structure and properties of polypyrrole/polyester warp knitted conductive fabric [J]. Journal of Textile Research, 2019, 40(09): 97-101.
[12] ZHANG Fan, ZHANG Ru, ZHOU Wenchang, ZHOU Hui, WANG Nanfang. Low-temperature bleaching of cotton knitted fabrics using hydrogen peroxide in presence of copper complex catalysts [J]. Journal of Textile Research, 2019, 40(08): 101-108.
[13] TAO Kaixin, YU Chengbing, HOU Qi'ao, WU Congjie, LIU Yinfeng. Wet-steaming dyeing prediction model of cotton knitted fabric with reactive dye based on least squares support vector machine [J]. Journal of Textile Research, 2019, 40(07): 169-173.
[14] MA Zhenping, MAO Zhiping, ZHONG Yi, XU Hong. De-curling control of single-weft knitted fabric in open width pad-steam dyeing [J]. Journal of Textile Research, 2019, 40(05): 91-96.
[15] HAN Xiaoxue, MIAO Xuhong. Longitudinal electrical physical properties of spandex weft-knitted conductive fabric [J]. Journal of Textile Research, 2019, 40(04): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!