Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (03): 175-180.doi: 10.13475/j.fzxb.20200203806
• Comprehensive Review • Previous Articles Next Articles
JIANG Zhaohui1,2, LI Yonggui2(), YANG Zitao3, GUO Zengge1, ZHANG Zhanqi4, QI Yuanzhang4, JIN Jian5
CLC Number:
[1] | LEE K R, JANG S, JUNG I. Analysis of acoustical performance of bi-layer graphene and graphene-foam-based thermoacoustic sound generating devices[J]. Carbon, 2018,127:13-20. |
[2] | 张清华, 张殿波. 石墨烯与纤维的高性能化[J]. 纺织学报, 2016,37(10):145-152. |
ZHANG Qinghua, ZHANG Dianbo. Graphene and enhanced fibers[J]. Journal of Textile Research, 2016,37(10):145-152. | |
[3] | KUMAR M SWAMY B E K MOHAMMED ASIF M H M, et al. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine[J]. Applied Surface Science, 2017,399:411-419. |
[4] | 赵晓凤, 郑兵, 杨逢春, 等. 原位聚合制备石墨烯/PET及其性能研究[J]. 浙江理工大学学报(自然科学版), 2017,37(4):497-501. |
ZHAO Xiaofeng, ZHENG Bing, YANG Fengchun, et al. Preparation of graphene/PET by in-situ polycondensation and study on its properties[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2017,37(4):497-501. | |
[5] | XU Z, GAO C. Graphene fiber: a new trend in carbon fiber[J]. Materials Today, 2015,18(9):480-492. |
[6] | HAZARIKA A, DEKA B K, KIM D, et al. Microwave induced hierarchical iron-carbon nanotubes nanostructures anchored on polypyrrole/graphene oxidegrafted woven kevlar fiber[J]. Composites Science Technology, 2016,129:137-145. |
[7] | CHEN L, WEI F, LIU L, et al. Grafting of silane and graphene oxide onto pbo fibers: multifunctional interphase for fiber/polymer matrix composites with simultaneously improved interfacial and atomic oxygen resistant properties[J]. Composites Science Technology, 2015,106:32-38. |
[8] | REN J S, WANG C X, ZHANG X, et al. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide[J]. Carbon, 2017,111:622-630. |
[9] | BERENDJCHI A, KHAJAVI R, YOUSEFI A A, et al. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate[J]. Applied Surface Science, 2016,363:264-272. |
[10] | GUO J P, GUO H J, ZHOU W, ZHOU W, et al. Preparation of graphene/poly (p-phenylenebenzobisoxazole) composite fibers based on simultaneous zwitterion coating and chemical reduction of graphene oxide at room temperature[J]. RCS Advances, 2015 (5):88646-88654. |
[11] | 曲丽君, 田明伟, 迟淑丽, 等. 部分石墨烯复合纤维与制品的研发[J]. 纺织学报, 2016,37(10):170-177. |
QU Lijun, TIAN Mingwei, CHI Shuli, et al. Research and development of graphene composite fibers and fabrics[J]. Journal of Textile Research, 2016,37(10):170-177. | |
[12] | 梁红培, 王英波, 粟智, 等. 电纺制备明胶/壳聚糖/羟基磷灰石/氧化石墨烯抗菌复合纳米纤维的研究[J]. 无机材料学报, 2015,30(5):516-522. |
LIANG Hongpei, WANG Yingbo, LI Zhi, et al. Electrospinning gelatin/chitosan/hydroxyapatite/graphene oxide composite nanofibers with antibacterial properties[J]. Journal of Inorganic Materials, 2015,30(5):516-522. | |
[13] | KALANTARI B, MOJTAHEDI M R M, SHARIF F, et al. Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres[J]. Composites Part A: Applied Science and Manufacturing, 2015,76:203-214. |
[14] | 沈宸, 陆云. 石墨烯/导电聚合物复合材料在超级电容器电极材料方面的研究进展[J]. 高分子学报, 2014 (10):1328-1341. |
SHEN Chen, LU Yun. Progress in the research of graphene/conducting polymer composites for the application of supercapacitor electrode materials[J]. Acta Polymerica Sinica, 2014 (10):1328-1341. | |
[15] |
JIANG X P, REN Z L, FU Y F, et al. Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains[J]. ACS Applied Materials and Interfaces, 2019,11(40):37051-37059.
doi: 10.1021/acsami.9b11596 pmid: 31465197 |
[16] | HAOY N, TIAN M W, ZHAO H T, et al. High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route[J]. Industrial and Engineering Chemistry Research, 2018,57(40):13437-13448. |
[17] | YOU X L, HE J X, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018,6(47):12981-12991. |
[18] | MA R, KANG B, CHO S, et al. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers[J]. ACS Nano, 2015 (9):10876-10886. |
[19] | YAN T, WANG Z, WANG Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials and Design, 2018,143:214-223. |
[20] | WEISE B, STEINMANN W, BECKERS M, et al. Melt spinning of electrically capacitive fibers by addition of graphene multilayers[J]. International Textile Leader, 2015 (7):7-9. |
[21] | 胡洪亮, 张国. 石墨烯/超高分子量聚乙烯导电复合材料的电性能[J]. 高分子材料科学与工程, 2016,32(2):95-98. |
HU Hongliang, ZHANG Guo. Electrical properties of graphene/ultrahigh molecular weight polyethylene composites[J]. Polymer Materials Science & Engineering, 2016,32(2):95-98. | |
[22] | WEIR M P, JOHNSON D W, BOOTHROYD S C, et al. Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites[J]. Acs Macro Letters, 2016,5(4):430-434. |
[23] | AVOLIO R, GENTILE G, AVELLA M, et al. Polymer-filler interactions in PET/CaCO3 nanocomposites:Chain ordering at the interface and physical properties[J]. European Polymer Journal, 2013,49:419-427. |
[24] | JIANG Z H, GUO Z G, PU C C, et al. Effect of coupling agent on crystallization and rheological properties of poly(ethylene terephthalate) composite masterbatches[J]. Polymer Composites, 2017,38(11):2358-2367. |
[25] | MA Q, MAO B, CEBE P. Chain confinement in electrospun nanocomposites: using thermal analysis to investigate polymer-filler interactions[J]. Polymer, 2011,52:3190-3200. |
[26] | CAI J Z, CHAWLA S, NARAGHI M. Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers[J]. Carbon, 2016,109:813-822. |
[27] | NAIN R, YADAY K, JASSALl M, et al. Aligned ZnO nanorods as effective reinforcing material for obtaining high performance polyamide fibers[J]. Composites Science and Technology, 2015,120:58-65. |
[28] | ZHANG W, NING N Y, GAO Y, et al. Stretching induced interfacial crystallization and property enhancement of poly(l-lactide)/single-walled carbon nanotubes fibers[J]. Composites Science and Technology, 2013,83:47-53. |
[29] | NING N Y, FU S R, ZHANG W, et al. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization[J]. Progress in Polymer Science, 2012,37:1425-1455. |
[30] | GAO Y, FU Q, NIU L Y, et al. Enhancement of the tensile strength in poly(p-phenylene sulfide) and multi-walled carbon nanotube nanocomposites by hot-stretching[J]. Journal of Materials Science, 2015,50(10):3622-3630. |
[1] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
[2] | CHEN Hui, WANG Xi, DING Xin, LI Qiao. Design of temperature-sensitive garment consisting of full fabric sensing networks [J]. Journal of Textile Research, 2020, 41(03): 118-123. |
[3] | LI Siming, WU Guanzheng, HU Yujie, FANG Meiqi, HE Luxiang, HE Yan, XIAO Xueliang. Preparation of pressure distribution monitoring socks and related sensing properties [J]. Journal of Textile Research, 2019, 40(07): 138-144. |
[4] | . Experimental research on deposition process of micro-droplet jet printing on fabric surface [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 139-144. |
[5] | HUANG He;YU Weidong;YAN Haojing. Classification of self-adaptive textiles and related products [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(12): 135-140. |
|