Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 144-150.doi: 10.13475/j.fzxb.20201003607

• Apparel Engineering • Previous Articles     Next Articles

Relationship between thermal-moist comfort of medical protective clothing and human fatigue

NIU Mengyu1, PAN Shuwen1,2(), DAI Hongqin1,2, LÜ Kaimin1   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Modern Silk National Engineering Laboratory, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2020-10-20 Revised:2021-04-10 Online:2021-07-15 Published:2021-07-22
  • Contact: PAN Shuwen E-mail:panshuwen@suda.edu.cn

Abstract:

It has been a noted problem that medical staff wearing medical protective clothing for a long time would feel hot and humid, leading to fatigue and low work efficiency. A research based on human wearing experiment is carried out. Through the analysis of human thermal physiology and subjective fatigue parameters, the influence of the thermal-moist comfort performance of medical protective clothing on human fatigue was analyzed. The results show that the thermal-moist comfort of protective clothing with short sleeves is the best, and that with long sleeve and thick suit was the worst.Wearing protective clothing with different thermal-moist comfort performance has different effects on human fatigue under different exercise intensity. Wearing protective clothing in the state of sitting, the difference of human fatigue degree is small. Under the conditions of low, medium and high exercise intensity and recovery, it was shown that the worse the thermal-moist comfort of protective clothing, the deeper the fatigue degree of human body. The average skin temperature, heart rate and metabolic equivalent of energy were found to be significantly correlated with subjective fatigue. Regression analysis was used to get the model of fatigue and heart beat rate, which reflects the fatigue degree of human body.

Key words: medical protective clothing, thermal-moist comfort, metabolism, mean skin temperature, fatigue

CLC Number: 

  • TS941

Fig.1

Clothing combination"

Tab.1

Clothing parameters"

服装
组合
材质 号型 质量/kg 热阻/clo 湿阻/
(m2·Pa·W-1)
TA Tyvek®+棉 180/106A 0.44±0.00 1.43±0.04 75.31±0.34
TB 180/106A 0.61±0.01 1.70±0.06 80.06±0.82
TC 180/105A 1.13±0.01 2.01±0.04 80.84±0.73

Fig.2

Newton sweating manikin"

Fig.3

Test scheme"

Tab.2

Human parameters collected in experiment"

分类 参数 测试仪器
生理参数 人体皮肤温度 温湿度传感器
能量代谢当量 Meta Max 3B 仪器
心率 心率胸带(Polar H10)
汗液蒸发量 电子称重仪(ICS439-SW)
主观感觉参数 冷热感觉
湿感觉
舒适感
疲劳感

Fig.4

Subjective evaluation scale. (a) Hot and cold feeling;(b) Wet feeling; (c) Comfort feeling; (d) Fatigue feeling"

Fig.5

Measurement points of average skin temperature"

Fig.6

Mean skin temperature"

Fig.7

Metabolic equivalent of energy"

Fig.8

Heart rate"

Fig.9

Subjective evaluation value of hot and cold feeling"

Fig.10

Subjective evaluation value of wet feeling"

Fig.11

Subjective evaluation value of comfort feeling"

Fig.12

Subjective evaluation value of fatigue feeling"

Fig.13

Proportion of people with subjective fatigue level in different stages"

Tab.3

Pearson correlation analysis"

指标 参数 疲劳感 冷热感觉 湿感觉 舒适感
Tsk r 0.518** 0.605** 0.691** -0.701**
Sig. 0.000 0.000 0.000 0.000
HR r 0.929** 0.916** 0.850** 0.850**
Sig. 0.000 0.000 0.000 0.000
能量代谢
当量
r 0.862** 0.814** 0.902** -0.657**
Sig. 0.000 0.000 0.000 0.000
[1] 姚穆, 孙润军. 纺织品舒适性研究的思考和建议[J]. 纺织高校基础科学学报, 2019, 32(2):117-118.
YAO Mu, SUN Runjun. Thoughts and suggestions on the study of textile comfort[J]. Basic Sciences Journal of Textile Universities, 2019, 32(2):117-118.
[2] 李正海, 薛文良, 魏孟媛, 等. 医用一次性防护服测试标准的现状与比较分析[J]. 产业用纺织品, 2017, 35(10):37-42.
LI Zhenghai, XUE Wenliang, WEI Mengyuan, et al. Current situation and comparative analysis of testing standards on medical disposable protective clothing[J]. Technical Textiles, 2017, 35(10):37-42.
[3] 王云仪, 李俊, 王革辉, 等. 医用防护服用非织造布的热湿舒适性能研究[J]. 东华大学学报(自然科学版), 2006(6):116-119,133.
WANG Yunyi, LI Jun, WANG Gehui, et al. Thermal comfort properties of nonwovens used in medical protective clothing[J]. Journal of Donghua University (Natural Science), 2006(6):116-119,133.
[4] 陆丽娅, 张辉. 防护服舒适性的改进研究进展[J]. 北京服装学院学报(自然科学版), 2014, 34(3):38-45.
LU Liya, ZHANG Hui. Review of the advancement in protective clothing comfort[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2014, 34(3):38-45.
[5] 朱铮, 刘长明. 试论防护服装的舒适性与保健性[J]. 中国个体防护装备, 2014(2):22-25.
ZHU Zheng, LIU Changming. Discussion on comfort and health protection of protective clothing[J]. China Personal Protective Equipment, 2014(2):22-25.
[6] MCCORMACK AL, HAFFNER WB. Kimberly clark worldwide inc US patent and trademark office[J]. Chem Abstr, 2006(144):434-401.
[7] MAGEL M, AIBIBU D. Evaluation and testing of optical test methods for the geometric analysis of the pore spaces of operating room and hospital textiles[J]. Medical Textiles, 1998, 11(2):26.
[8] 韩玲, 马英博, 胡梦缘, 等. 改善医用一次性防护服热湿舒适性的研究进展[J]. 棉纺织技术, 2020, 48(4):75-78.
HAN Ling, MA Yingbo, HU Mengyuan, et al. Research progress on improving thermal-wet comfort of single-use protective clothing for medical use[J]. Cotton Textile Technology, 2020, 48(4):75-78.
[9] 张丽丽. 出汗假人在服装热湿舒适性中的测试与评价[J]. 中国个体防护装备, 2014(5):44-49.
ZHANG Lili. Test and evaluation of sweating manikin in clothing heat-moisture comfort[J]. China Personal Protective Equipment, 2014(5):44-49.
[10] 尹思源, 翟世瑾, 张昭华. 服装热湿舒适性评价方法研究[J]. 国际纺织导报, 2014, 42(9):70-72,74-75.
YIN Siyuan, ZHAI Shijin, ZHANG Zhaohua. The research on evaluation methods of clothing heat-moisture comfort[J]. Melliand China, 2014, 42(9):70-72,74-75.
[11] 傅吉全, 陈天文, 李秀艳. 织物热湿传递性能及服装热湿舒适性评价的研究进展[J]. 北京服装学院学报(自然科学版), 2005(2):66-72.
FU Jiquan, CHEN Tianwen, LI Xiuyan. Research progress on heat and moisture transfer properties of fabrics and thermal and moisture comfort evaluation of clothing[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2005(2):66-72.
[12] 林鸿扬. 织物热湿传递性能测试方法评述[J]. 中国纤检, 2011(22):60-63.
LIN Hongyang. Evaluation of testing methods on fabric heat-moisture transmission[J]. China Fiber Inspection, 2011(22):60-63.
[13] FU G. A transient,3D mathematical thermal model for the clothed human[D]. Kansas: Kansas State University, 1995: 1-18.
[14] 胡紫婷, 郑晓慧, 冯铭铭, 等. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11):145-150,160.
HU Ziting, ZHENG Xiaohui, FENG Mingming, et al. Influence of air gap on thermal and moisture properties of permeable protective clothing[J]. Journal of Textile Research, 2019, 40(11):145-150,160.
[15] 李毅. 服装舒适性与产品开发[M]. 北京: 中国纺织出版社, 2002: 76-98.
LI Yi. Clothing comfort and product development[M]. Beijing: China Textile & Apparel Press, 2002: 76-98.
[16] SONG Wenfang, WANG Faming, WEI Fanru. Hybrid cooling clothing to improve thermal comfort of office workers in a hot indoor environment[J]. Building and Environment, 2016, 100:92-101.
doi: 10.1016/j.buildenv.2016.02.009
[17] NADEL E R, STOLWIJK J A. Effect of skin wettedness on sweat gland response[J]. Journal of Applied Physiology, 1973, 35(5):689-694.
doi: 10.1152/jappl.1973.35.5.689
[1] YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101.
[2] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[3] CHEN Shiping, CHEN Min, WEI Cen, WANG Fujun, WANG Lu. Structure and functions of medical protective clothing and trend for research and development [J]. Journal of Textile Research, 2020, 41(08): 179-187.
[4] MIN Xiaobao, PAN Zhijuan. Comparison and analysis on structure and function of medical protective clothing [J]. Journal of Textile Research, 2020, 41(08): 172-178.
[5] LI Cheng'an, LU Hong. Research and development of smart garments for waist muscle injury protection [J]. Journal of Textile Research, 2020, 41(02): 119-124.
[6] CHENG Ningbo, WU Zhiming, KE Sicheng. Influence of clothing pressure on muscle fatigue during men's cycling [J]. Journal of Textile Research, 2019, 40(08): 130-135.
[7] . Influence of clothing pressure on female lower limb muscle fatigue during running sports [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 118-123.
[8] .  Dynamic fatigue resistance of webbing sling with high-tenacity PET fiber [J]. Journal of Textile Research, 2015, 36(02): 66-70.
[9] . Bending fatigue theory of textile fibers and its application  [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 152-0.
[10] RONG Qi;QIU Yiping. Bending fatigue behavior of 3-D woven composites [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 42-44.
[11] LI Jian-min;SHEN Yi;LEI Jin-feng. Analysis on the fatigue life of JAT610 loom's lateral supports [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(3): 66-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!